

#### zipfR

#### Evert & Baroni

| Linguistics           | The                     |
|-----------------------|-------------------------|
| Statistical inference | <b>The</b><br>Words and |
| Zipf's law            | worus anu               |
| LNRE models           |                         |
| Frequency<br>spectrum | Stefan                  |
| zipfR                 |                         |
| Extrapolation         | Universi                |
| Next steps            | 50                      |
| Availability          | Univers                 |

**zipfR** library: other rare events in R

#### Evert & Marco Baroni

sity of Osnabrück, Germany tefan.evert@uos.de

University of Bologna, Forlì, Italy baroni@sslmit.unibo.it

useR! 2006, Vienna, 15 June 2006

#### Outline UNIVERSITÄT OSNABRÜCK

infere

zipfR

Next s

Availa

Next steps

Availability

| zipfR<br>Evert & Baroni                          | (Computational) linguistics                                               |
|--------------------------------------------------|---------------------------------------------------------------------------|
| Linguistics<br>Statistical<br>inference          | Statistical inference in (computational) linguistics                      |
| Zipf's law<br>LNRE models<br>Frequency           | Zipf's law and the LNRE problem<br>LNRE models for linguistic populations |
| spectrum<br>zipfR<br>Extrapolation<br>Next steps | Model estimation: The frequency spectrum                                  |
| Availability                                     | Extrapolation of VGCs                                                     |
|                                                  | Further work<br>Availability                                              |
|                                                  |                                                                           |

# **UNIVERSITÄT** OSNABRÜCK

What is (computational) linguistics?

zipfR Evert & Baroni

# Linguistics Zipf's law zipfR

- Next steps
- Availability

### The science of **linguistics** is concerned with ....

- natural language as a formal system (phonology, morphology, syntax, semantics, etc.)
- human language production and understanding, including the acquisition of language competence

### Computational linguistics

- applies computers and electronic resources to linguistic research questions
- makes use of linguistic insights to build automatic natural language processing (NLP) systems

| UNIVERSITÄT<br>OSNABRÜCK | Corpora in (computational) linguistics                                                          |
|--------------------------|-------------------------------------------------------------------------------------------------|
| zipfR<br>Evert & Baroni  | <ul> <li>increasing focus on language use and empirical<br/>evidence in recent years</li> </ul> |
| Linguistics              | based on corpora = (usually large) machine-readable                                             |
| Statistical<br>inference | samples of naturally ocurring language                                                          |
| Zipf's law               | some applications of corpus data                                                                |
| LNRE models              | test hypotheses about formal system of language                                                 |
| Frequency spectrum       | <ul> <li>validation of linguists' introspective judgements</li> </ul>                           |

- observable result of human language production
- model for linguistic experience of human speaker
- training data for statistical NLP applications
- ► corpus = sample → need for statistical analysis
  - standard methodologies are being established
  - random sample assumption is controversial for most corpora → statistical inference may be unreliable
  - ongoing research into appropriate statistical models



### Statistical inference from corpus data

| zipfR                    |
|--------------------------|
| Evert & Baroni           |
| Linguistics              |
| Statistical<br>inference |

zipfR

Next steps

Availability

| only observable data are corpus frequencies           |
|-------------------------------------------------------|
| commonly used terminology: types vs. tokens           |
| tokens can be running words, sentences in a text,     |
| instances of syntactic constructions, documents, etc. |
| categorization into fixed or open-ended set of types: |
| distinct word forms or lemmas, parts of speech, etc.  |

- of central interest are type frequencies  $f(\omega)$
- corpus is interpreted as a random sample of tokens  $\rightarrow$  inferences about type probabilities  $\pi_{\omega}$  from  $f(\omega)$
- linguistic populations are characterized by ....
  - 1. finite or countably infinite set of types  $\omega$ 2. type probabilities  $\pi_{\omega}$
- multinomial distribution of observed frequencies
  - confidence intervals or Bayesian estimates
  - comparison of type probabilities ( $H_0$ :  $\pi_1 = \pi_2$ )
  - statistical associations

#### A characteristic problem: Zipf's law **UNIVERSITÄT** OSNABRÜCK

- zipfR Evert & Baroni
- Zipf's law

inference

zipfR

Next steps Availability

- Inquistic population is usually characterized by a very large or even infinite number of type probabilities
- in addition, substantial portion of probability mass is distributed over very infrequent types ( $\neq$  normal dist.)
- referred to as the LNRE property (Khmaladze 1987) (large number of rare events)
- popularly known as Zipf's law, based on the **Zipf-Mandelbrot law** for type probabilities  $\pi_k = \pi_{w_k}$ :

$$\pi_k \approx \frac{C}{(k+b)^a}$$

where b > 0 and a > 1 is usually close to 1

- Zipf ranking:  $\pi_1 \ge \pi_2 \ge \pi_3 \ge \ldots$
- see e.g. Baayen (2001, 101) for Zipf-Mandelbrot law
- can be derived from Markov process (Rouault 1978)

| UNIVERSITÄT<br>OSNABRÜCK                                           | Consequences of Zipf's law                                                                                                                                                                                                                                                                                  |                                                                   |
|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| zipfR<br>Evert & Baroni<br>Linguistics<br>Statistical<br>inference | <ul> <li>most types occur just once in a sample (hapax legomena) or not at all (out-of-vocabulary, OOV)</li> <li>hypothesis tests, confidence intervals and Bayesian estimates (for uniform or beta priors) will be inaccurate</li> </ul>                                                                   | zipfR<br>Evert & Baron<br>Linguistics<br>Statistical<br>inference |
| Zipf's law                                                         | estimates (for uniform of beta profs) will be inaccurate                                                                                                                                                                                                                                                    | Zipf's law                                                        |
| LNRE models<br>Frequency<br>spectrum<br>zipfR<br>Extrapolation     | Imagine a population with 500 highly frequent types $(\pi = 10^{-3})$ and 500,000 rare types $(\pi = 10^{-6})$ . In a sample of size $N = 1000$ there will be approx. 500 of the rare types among the hapax legomena, but the <i>p</i> -value for each individual occurrence is $p < .001$ (binomial test). | LNRE models<br>Frequency<br>spectrum<br>zipfR<br>Extrapolation    |
| Next steps<br>Availability                                         | <ul> <li>estimators can also be highly biased<br/>if unseen types (OOV) are not taken into account</li> </ul>                                                                                                                                                                                               | Next steps<br>Availability                                        |

| IIVERSITAT<br>NABRÜCK     | LNRE models                                                                                                                                                                                                                                             |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ipfR<br>& Baroni<br>stics | ► we need a population model for the distribution of type<br>probabilities → LNRE model (Baayen 2001)                                                                                                                                                   |
| cal<br>ice<br>aw          | <ul> <li>such LNRE models have a wide range of applications</li> <li>analyze accuracy of hypothesis tests and confidence<br/>interval estimates (Evert 2004b, Ch. 4)</li> </ul>                                                                         |
| nodels<br>ncy<br>um       | <ul> <li>better prior distributions for Bayesian estimates</li> <li>estimate population vocabulary size (number of types),<br/>e.g. in authorship attribution (Thisted and Efron 1987),</li> </ul>                                                      |
| olation<br>teps<br>bility | <ul> <li>stylometry, or early diagnosis of Alzheimer's disease (Garrard <i>et al.</i> 2005)</li> <li>extrapolate vocabulary growth, e.g. to estimate proportion of OOV types in large amounts of text, or the proportion of typos on the Web</li> </ul> |
|                           |                                                                                                                                                                                                                                                         |

 extrapolate proportion of hapaxes for measuring morphological productivity in word formation (Baayen 2003; Lüdeling and Evert 2003)

| M | UNIVERSITÄ |
|---|------------|
| U | OSNABRÜCK  |

### LNRE models based on the Zipf-Mandelbrot law

zipfR

#### Evert & Baroni

LNRE models

zipfR

Availability



function for type probabilities (as r.v.)

 $F(\rho) \coloneqq \sum_{\pi_k \le \rho} \pi_k$ 

• F is an increasing step function with range [0, 1]

• type distribution function G is more useful:

$$G(\rho) \coloneqq \left\{ \{ \omega_k \mid \pi_k \ge \rho \} \right\}$$

- G is a decreasing step function
- for  $\rho \to 0$ , we have  $G(\rho) \to S$ 
  - (S = population vocabulary size, which may be infinite)
- can easily be specified for  $\rho = \pi_k$

UNIVERSITÄT OSNABRÜCK The Zipf-Mandelbrot LNRE model

```
zipfR
Evert & Baroni
```

inference

Zipf's law

zipfR

Next steps Availability

LNRE models

Some simplifications ...

- use Poisson sampling instead of multinomial distribution (not conditioned on sample size N)
- approximate step function  $G(\rho)$  by continuous function with type density  $g(\pi)$ :

$$G(\rho) \approx \int_{\rho}^{\infty} g(\pi) \, d\pi$$

the Zipf-Mandelbrot (ZM) model (Evert 2004a)

$$g(\pi) \coloneqq \begin{cases} C \cdot \pi^{-\alpha - 1} & 0 \le \pi \le B \\ 0 & \text{otherwise} \end{cases}$$

- free parameters are  $0 < \alpha < 1$  and  $0 < B \le 1$
- relation to Zipf-Mandelbrot law:  $\alpha = a^{-1}$



The Zipf-Mandelbrot LNRE model UNIVERSITÄT OSNABRÜCK



(densities in the images are  $log_{10}$ -transformed)





### Extensions of the Zipf-Mandelbrot model

#### zipfR

Evert & Baroni

- LNRE models
- zipfR

- Availability

- finite ZM model adds lower threshold A for the type probabilities, i.e.  $g(\pi) = 0$  for  $\pi < A$  (Evert 2004a)
- ▶ GIGP model (Sichel 1971, 1975) with exponential attenuation instead of abrupt cutoff points, originally suggested by Good (1953, 249)
- allow better approximation of true population distribution, but mathematically less elegant and numerically more complex

#### Estimation of the model parameters UNIVERSITÄT OSNABRÜCK

- zipfR Evert & Baroni

inference

Zipf's law

Frequency

spectrum

Next steps Availability

zipfR

- estimate parameters of model from observed sample
  - type probabilities cannot be observed directly
  - $\blacktriangleright$  many low-frequency types  $\rightarrow$  estimates unreliable
  - Zipf ranking of observed frequencies  $f_r$  may be different from Zipf ranking of type probabilities  $\pi_k$
- individual hapaxes ( $f_k = 1$ ) provide no useful information, but the number  $V_1$  of such types does
- observed frequency spectrum

 $V_m \coloneqq |\{\omega_k \mid f_k = m\}|$ 

with vocabulary size

$$V \coloneqq \left| \left\{ \omega_k \, | \, f_k > 0 \right\} \right| = \sum_{m=1}^{\infty} V_m$$

#### Observed and expected frequency spectrum **UNIVERSITÄT** OSNABRÜCK zipfR • expected spectrum can be calculated from $g(\pi)$ : Evert & Baron $\mathbf{E}[V_m] = \int_0^\infty \frac{(N\pi)^m}{m!} e^{-N\pi} g(\pi) \, d\pi$ leads to (incomplete) Gamma functions for ZM model Zipf's law Frequency spectrum at N = 200k Frequency observed ZM model Brown first observed spectrum for word American spectrum 10000 English published in 1961) among 8000 of $V_m/E[V_m]$ tokens (written Availability types 4000 200,000 2000 corpus form

1 2 3

5

m

10

| UNIVERSITÄT<br>OSNABRÜCK                                                                                                                                                         | The zipfR libr                                                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| zipfR<br>Evert & Baroni<br>Linguistics<br>Statistical<br>inference<br>Zipf's law<br>LNRE models<br>Frequency<br>spectrum<br>zipfR<br>Extrapolation<br>Next steps<br>Availability | The <b>zipfR</b> library<br>LNRE models<br>parameter es<br>goodness-of<br>plots (spectr<br>many utility<br>fast subsamp |
|                                                                                                                                                                                  |                                                                                                                         |

### rary

### y for **R** implements:

- s: ZM, finite ZM, GIGP
- stimation from observed spectrum
- f-fit testing (Baayen 2001, 118-122)
- rum, type & probability density)
- functions for type frequency data
- pling & interpolation of observed spectrum

#### A zipfR example UNIVERSITÄT OSNABRÜCK

| zipfR                    | spc <- read.spc("brown.200k.spc")                              |
|--------------------------|----------------------------------------------------------------|
| Evert & Baroni           | <ul> <li>Ioad observed frequency spectrum from file</li> </ul> |
| Linguistics              | ▶ model <- lnre("zm", spc)                                     |
| Statistical<br>inference | 📧 estimate parameters of ZM model from spectrum                |
| Zipf's law               | <pre>summary(model)</pre>                                      |
| LNRE models              | 📨 displays model parameters & goodness-of-fit                  |
| Frequency<br>spectrum    | <pre>spc.exp &lt;- lnre.spc(model, N(spc))</pre>               |
| zipfR                    | expected spectrum at this sample size                          |
| Extrapolation            | plot.spc(spc, spc.exp, m.max=10)                               |
| Next steps               | plot expected vs. observed spectrum (as seen before)           |
| Availability             |                                                                |
|                          |                                                                |

#### Extrapolation of vocabulary growth UNIVERSITÄT OSNABRÜCK

#### zipfR Evert & Baroni

inference

Zipf's law

zipfR

Next steps

Availability

• LNRE models are often used for extrapolation of vocabulary growth beyond observed sample size fully supported by **zipfR** library



extrapolation of vocabulary growth in Brown corpus from first 200,000 tokens to full size of 1 million word tokens, using the ZM model

| UNIVERSITÄT<br>OSNABRÜCK                                                                                                                           | Further work on the zipfR library                                                                                                                                                                                                                                                                                                                                                                                                           | <b>UNIVERSITÄT</b><br>OSNABRÜCK                                                                                                                    | Ava |
|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| zipfR<br>Evert & Baroni<br>Linguistics<br>Statistical<br>inference<br>Zipf's law<br>LNRE models<br>Frequency<br>spectrum<br>zipfR<br>Extrapolation | <ul> <li>more accurate and robust implementation of models</li> <li>better parameter estimation (plain nlm() for now)</li> <li>extended functionality for automation of experiments, e.g. extrapolation experiments with multiple randomizations (Baroni and Evert 2005)</li> <li>more advanced LNRE models for better goodness-of-fit</li> <li>corrections for non-randomness → better extrapolation</li> <li>what do you want?</li> </ul> | zipfR<br>Evert & Baroni<br>Linguistics<br>Statistical<br>inference<br>Zipf's law<br>LNRE models<br>Frequency<br>spectrum<br>zipfR<br>Extrapolation | Ava |
| Next steps<br>Availability                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                             | Next steps<br>Availability                                                                                                                         |     |

### ailability

vailability of the **zipfR** library ...

#### \*ahem\*

- but we can promise that it will be up on CRAN by end of July (in time for our ESSLLI course on *Counting Words*)
- some functionality (e.g. ZM and fZM models) already available in the UCS toolkit (www.collocations.de)
- we're also working on the **corpora** library for **R**, with basic statistical inference from corpus frequency data



## zipfR Evert & Baroni Thank you! **Questions?** zipfR Fragen? Next steps Availability

#### References I UNIVERSITÄT OSNABRÜCK

#### zipfR

| Evert & Baroni                         | Baayen, R. Harald (2001). <i>Word Frequency Distributions</i> . Kluwer Academic Publishers, Dordrecht.                                                                                                                      |  |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Linguistics                            | Baayen, R. Harald (2003). Probabilistic approaches to morphology. In R. Bod,                                                                                                                                                |  |
| Statistical<br>inference               | J. Hay, and S. Jannedy (eds.), <i>Probabilistic Linguistics</i> , chapter 7, pages 229–287. MIT Press, Cambridge.                                                                                                           |  |
| Zipf's law                             | Baroni, Marco and Evert, Stefan (2005). Testing the extrapolation quality of                                                                                                                                                |  |
| LNRE models                            | word frequency models. In P. Danielsson and M. Wagenmakers (eds.),                                                                                                                                                          |  |
| Frequency spectrum                     | Proceedings of Corpus Linguistics 2005, volume 1 of The Corpus Linguistics Conference Series. ISSN 1747-9398.                                                                                                               |  |
| zipfR                                  | Evert, Stefan (2004a). A simple LNRE model for random character sequences. In<br>Proceedings of the 7èmes Journées Internationales d'Analyse Statistique                                                                    |  |
| Extrapolation                          | des Données Textuelles, pages 411–422, Louvain-la-Neuve, Belgium.                                                                                                                                                           |  |
| Next steps                             | Evert, Stefan (2004b). The Statistics of Word Cooccurrences: Word Pairs and                                                                                                                                                 |  |
| University of Stur<br>urn:nbn:de:bsz:9 | <i>Collocations</i> . Ph.D. thesis, Institut für maschinelle Sprachverarbeitung,<br>University of Stuttgart. Published in 2005, URN<br>urn:nbn:de:bsz:93-opus-23714. Available from<br>http://www.collocations.de/phd.html. |  |
|                                        | Garrard, Peter; Maloney, Lisa M.; Hodges, John R.; Patterson, Karalyn (2005).<br>The effects of very early alzheimer's disease on the characteristics of                                                                    |  |

#### writing by a renowned author. Brain, 128(2), 250-260.

#### **References II UNIVERSITÄT** OSNABRÜCK zipfR Good, I. J. (1953). The population frequencies of species and the estimation of population parameters. Biometrika, 40(3/4), 237-264. Evert & Baroni Khmaladze, E. V. (1987). The statistical analysis of large number of rare events. Technical Report MS-R8804, Department of Mathematical Statistics, CWI, Amsterdam, Netherlands. Lüdeling, Anke and Evert, Stefan (2003). Linguistic experience and productivity: Zipf's law corpus evidence for fine-grained distinctions. In D. Archer, P. Rayson, A. Wilson, and T. McEnery (eds.), Proceedings of the Corpus Linguistics 2003 Conference, pages 475-483. UCREL. Rouault, Alain (1978). Lois de Zipf et sources markoviennes. Annales de zipfR l'Institut H. Poincaré (B), 14, 169-188. Sichel, H. S. (1971). On a family of discrete distributions particularly suited to represent long-tailed frequency data. In N. F. Laubscher (ed.), Proceedings Next steps of the Third Symposium on Mathematical Statistics, pages 51-97, Pretoria, Availability South Africa. C.S.I.R. Sichel, H. S. (1975). On a distribution law for word frequencies. Journal of the American Statistical Association, 70, 542–547. Thisted, Ronald and Efron, Bradley (1987). Did Shakespeare write a newly-discovered poem? Biometrika, 74(3), 445-455.