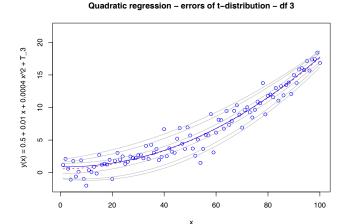
REGRESSION RANK-SCORES TESTS IN R

Jan Dienstbier

Jan Picek

contact: jan.picek@vslib.cz

Charles University, Prague Technical University of Liberec


Czech Republic

UseR! 2006, Vienna

SIMPLE EXAMPLE – QUADRATIC REGRESSION

Regession quantiles are:

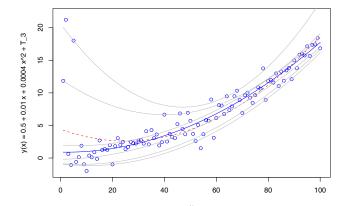
- direct generalization of "quantile principle" in a linear model
- robust as much as ordinary quantiles

QUANTILE REGRESSION

Consider a linear model $Y_i = \mathbf{x}_i^\top \boldsymbol{\beta} + e_i$, where $e_i \sim F$ are *i.i.d*.

DEFINITION: REGRESSION QUANTILES

$$\hat{\boldsymbol{\beta}}(\tau) := \arg \min_{\boldsymbol{b} \in \mathbb{R}^p} \sum_{i=1}^n \rho_\tau \left(y_i - \mathbf{x}_i^\top b \right),$$


where ρ_{τ} denotes loss function

$$\rho_{\tau}(u) := u \cdot (\tau - I(u < 0)).$$

U	JseR! 2006, Vienna 15-17.6.	J. Dienstbier & J. Picek	Regression rank-scores tests in R	June 2006
	SIMPLE EXAMPL	E – QUADR	ATIC REGRESSION	

Regession quantiles are:

- direct generalization of "quantile principle" in a linear model
- robust as much as ordinary quantiles

Previous model but with 3 altered values

UseR! 2006, Vienna 15-17.6

REGRESSION RANKS

DEFINITION: REGRESSION RANK SCORES

$$\hat{a}(\tau) = \arg \max_{a \in \mathbb{R}^n} y^\top a$$

in conditions that

$$X^{\top}a = (1 - \tau)X^{\top}1_n, \ a \in [0, 1]^n.$$

- solution of the dual linear programming problem
- behave similary as ordinary ranks ⇒ regression rank tests

REGRESSION RANK-SCORES TESTS - THE MECHANISM

- **1** calculate regression rank scores $\hat{a}(\tau)$ defined above
- 2 choose the proper score function φ this determines the form of the test and should be done in respect to the used data
 - usual selections are eg. logistic (Wilcoxon), normal (van der Waerden) or sign scores

3 calculate scores \hat{b}_{ni} , $i = 1, \dots, n$

$$\hat{b}_{ni} = -\int_0^1 \varphi(u) d\hat{a}_{ni}(u), \quad i = 1, \dots, n$$

4 plug this to the statistic invariant to regression – e.g.

$$S_{n0}(\mathbf{Y}) = \frac{1}{n} \sum_{i=1}^{n} Y_i \hat{b}_{ni} = n^{-1} \mathbf{Y}^{\top} \hat{\mathbf{b}}_n$$

UseR! 2006, Vienna 15-17.6.	J. Dienstbier & J. Picek	Regression rank-scores tests in R	June 2006	UseR! 2006, Vienna 15-17.6.	J. Dienstbier & J. Picek	Regression rank-scores tests in R	June 2006
AN EXAMPLE - GOODNESS-OF-FIT TEST			IN R LANGUAGE IT MEANS				

EXAMPLE

In the linear model $Y_i = \mathbf{x}_i^\top \boldsymbol{\beta} + \sigma e_i$, where $e_i \sim F$ is continuous distribution it holds under \mathbf{H}_0 : $F(e) \equiv F_0(e/\sigma)$

$$T_n^* = n^{1/2} \left\{ \log \frac{S_{n0}(\mathbf{Y})}{\hat{\beta}_1(3/4) - \hat{\beta}_1(1/4)} \right\} \xrightarrow{\mathcal{D}} \mathcal{N}\left(0, \xi^2(F_0)\right),$$

Common properties of such tests:

- **1** quite robust they are not affected by a heavy tailed F
- 2 independent to regression parameters (β,σ) they needn't to be estimated

1 useR! library <u>quantreg</u>, where are implemented basic methods of quantile regressions (regression ranks included)

... IN R LANGUAGE IT MEANS

... IN R LANGUAGE IT MEANS

- useR! library quantreg, where are implemented basic methods of quantile regressions (regression ranks included)
- 2 scores can be computed via ranks
 - e.g. ranks(rq(data ~ covar, tau=-1, score="wilcoxon"))

1 useR! library <u>quantreg</u>, where are implemented basic methods of quantile regressions (regression ranks included)

2 scores can be computed via ranks

■ e.g. ranks(rq(data ~ covar, tau=-1, score="wilcoxon"))

3 score function can be specified as a parametr of ranks

■ e.g. ranks(v, score="wilcoxon", tau=0.5)

UseRI 2006, Vienna 15-17.6. J. Dienstbier & J. Picek Regression rank-scores tests in R June 2006	UseRI 2006, Vienna 15-17.6. J. Dienstbier & J. Picek Regression rank-scores tests in R June 2006			
IN R LANGUAGE IT MEANS	IN R LANGUAGE IT MEANS			
useR! library quantreg, where are implemented basic methods of quantile regressions (regression ranks included)	 useR! library quantreg, where are implemented basic methods of quantile regressions (regression ranks included) 			
2 scores can be computed via ranks	2 scores can be computed via ranks			
■ e.g. ranks(rq(data ~ covar, tau=-1, score="wilcoxon"))	■ e.g. ranks(rq(data ~ covar, tau=-1, score="wilcoxon"))			
3 score function can be specified as a parametr of ranks	3 score function can be specified as a parametr of ranks			
■ e.g. ranks(v, score="wilcoxon", tau=0.5)	■ e.g. ranks(v, score="wilcoxon", tau=0.5)			
4 plug this to a suitable statistic and compare it with it's proper asymptotical <i>p</i> -value	4 plug this to a suitable statistic and compare it with it's proper asymptotical p-value			
• eg. properly normalized T_n^* compare with 1 - pnorm(0.95)	eg. properly normalized T_n^* compare with 1 - pnorm(0.95)			

As an example we implemented described GOF test.

AUTOREGRESSION

Regression rank scores concept can be generalized on AR time series

$$X_t = \theta_1 X_{t-1} + \ldots + \theta_p X_{t-p} + \epsilon_t, \quad t = 0, \pm 1, \pm 2...$$

Autorergression rank scores tests proposed in literature

- independence of two AR time series
- hypothesis AR(p-1) against AR(p)

... other tests can be derived from quite general theory Hallin and Jurečková (1997).

AUTOREGRESSION

Regression rank scores concept can be generalized on AR time series

$$X_t = \theta_1 X_{t-1} + \ldots + \theta_p X_{t-p} + \epsilon_t, \quad t = 0, \pm 1, \pm 2...$$

Autorergression rank scores tests proposed in literature

- independence of two *AR* time series
- hypothesis AR(p-1) against AR(p)

... other tests can be derived from quite general theory Hallin and Jurečková (1997).

- we implemented these tests in R
- basic procedures taken from quantreg
- only minor changes needed

UseR! 2006, Vienna 15-17.6.	J. Dienstbier & J. Picek	Regression rank-scores tests in R	June 2006	UseR! 2006, Vienna 15-17.6.	J. Dienstbier & J. Picek	Regression rank-scores tests in R	June 2006	
PROPOSALS – POSSIBLE IMPROVEMENTS OF				QUANTILE REGRESSION RANKS AND R				
IMPLEMENTAT	ION OF REGI	RESSION RANK SC	ORES IN R		eg nackage there	can be easily implemen	ted various	
Althought there are excellent basic algoritms in quantreg the			regression r	•				
implementation of regression rank tests is still little bit a "stub".			procedures are universal enough to extend these concept even on the AR series					

We propose:

- eliminate gaps in the implementation of the linear submodel hypothesis
 - basic procedure rrs.test. doesn't show p-values, user must know little bit more about the test to use it
 - implementation of the test in anova.rq isn't user-friendly, sometimes is hard to understand, what results user gets
- more than three types of score functions make it universally
- direct treatment of autoregression series with quantreg

surprisingly large scale of hypothesis - eg. GOF, AR independence

QUANTILE REGRESSION RANKS AND R

- with quantreg package, there can be easily implemented various regression rank tests
- procedures are universal enough to extend these concept even on the AR series
- surprisingly large scale of hypothesis eg. GOF, AR independence

Authors hope, that thanks to R it will be possible to evaluate, whether these tests interesting from the theoretical point of view can be used in the daily praxis.

REGRESSION RANK-SCORES TESTS IN R

Jan Dienstbier Jan Picek

contact: jan.picek@vslib.cz

Charles University, Prague Technical University of Liberec

Czech Republic

UseR! 2006, Vienna

UseR! 2006, Vienna 15-17.6.	J. Dienstbier & J. Picek	Regression rank-scores tests in R	June 2006	UseR! 2006, Vienna 15-17.6.	J. Dienstbier & J. Picek	Regression rank-scores tests in R	June 2006