Comparison of Approaches for Fitting Generalized Additive Models

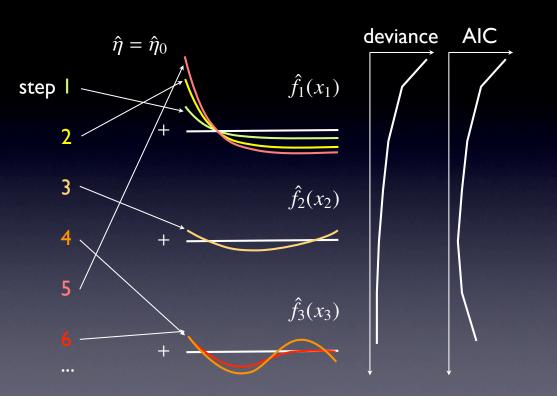
Harald Binder Freiburg Center for Data Analysis and Modeling binderh@fdm.uni-freiburg.de

Generalized Additive Models

- Response y taken to be from an exponential family (e.g. binary or Poisson) with $E(y|x) = \mu = g(\eta)$
- Covariates $x' = (x_1, \ldots, x_p)$
- Model $\eta = f_1(x_1) + \dots + f_p(x_p)$
- Based on univariate scatterplot smoothers for unknown smooth functions f_1, \ldots, f_p

Methods for Fitting

- A) Backfitting (gam:gam) with stepwise selection of degrees of freedom (df)
- B) Simultaneous estimation with optimization in smoothing parameter space (mgcv:gam)
- C) Using a mixed-model representation (e.g. mgcv:gamm) does not require selection of df or smoothing parameters
- D) Likelihood-based boosting (GAMBoost)


GAMBoost

- Stepwise boosting procedure
- Repeated fitting of residuals in the GLM framework: incorporation of previous boosting steps as η-offset
- Implicit variable and smoothness selection by updating only one smooth function in each step (by adding a penalized B-spline fit)
- R package GAMBoost
- see Tutz, G. & Binder, H., Biometrics, 2006

Simulation comparison

	true structure			(A) backfitting	(B) sm. par. optim.	(C) mixed model	(D) GAMBoost
	linear			Ο	Ο	-	+
	smooth	n small	p small	0	0		+
			p large	_	-	-	о
		n large	p small	+	++	+	+
			p large	о	-	-	+

optimal performance: ++ good: + still reasonable: o problematic: -

