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Genomics, Transcriptomics and Proteomics in Clinical
Research

Diagnostics

signatures
single biomarkers

Prognostic Factor Studies

response to treatment
toxicity
survival

Custom Drug Selection

predictive factors for response/
resistance to certain therapy
indicators of adverse events

Discovery of Therapeutic
Targets

candidate targets

Insight in Pharmacological
Mechanisms

pathway analysis
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Explanation vs. Prediction

Target: Explanation

Implies that there is some likelihood of a ”true” model
Model selection: few input variables are relevant
Occam’s razor: ’do not make more assumptions than needed’

Target: Prediction

Statistical learning
Model selection: quality of prediction

Topic: Large scale problems
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Large scale problems

New biomolecular techniques:

Number of input variables (genes, clones, etc.): 1000s to
10,000s
Number of observations: 10s to 100s
→ number of observations << number of input variables
→ more unknown parameters than estimation equations
→ infinitely many solutions

Models can be fit perfectly to the data
→ no bias but high variance

Use statistical learning methods to handle these problems!
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Statistical Learning

Control of Model Complexity

Restriction methods

the class of functions of the input vectors is limited

Selection methods

constitute methods, which include only those basis functions of
the input vectors that contribute ‘significantly’ to the fit of the
model
examples are variable selection methods, stepwise greedy
approaches like boosting

Regularization methods

restrict the coefficients of the model, e.g. ridge regression
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Penalized maximum likelihood estimation

Maximizing the log likelihood can result in fitting noise in the
data.

A shrinkage approach will often result in estimates of the
regression coefficients that, while biased, are lower in mean
squared error and are more close to the true parameters.

A good approach to shrinkage is penalized maximum
likelihood estimation (le Cessie & van Houwelingen, 1990).

A general form of penalized log likelihood is

n∑
i=1

logL(yi ; g(xT
i β))−

d∑
j=1

pλ(|βj |)

From the log-likelihood a so-called ‘penalty’ is subtracted,
that discourages regression coefficients to become large.
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Penalty functions

A good penalty function should result in a estimator with the
following three properties (Fan & Li, 2001):

Unbiasedness: The resulting estimator is nearly unbiased when
the true unknown parameter is large to avoid excessive
estimation bias

Sparsity: Estimating a small coefficient as zero, to reduce
model complexity

Continuity: The resulting estimator is continuous in the data
to avoid instability in model prediction
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Penalty functions

Well-known penalty functions are Lq-norm penalties:

pλ(|θ|) = λ|θ|q

L2 (Ridge regression) with thresholding rule

θ̂(z) =
1

1 + λ
z

→ continuous, but biased and no sparse solutions

L1 (LASSO) with thresholding rule

θ̂(z) = sgn(z)(|z | − λ)+

→ continuous and sparse, but no unbiased solutions
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Penalty functions

Convex penalties (e.g. quadratic penalties)

make trade-offs between bias and variance
can create unnecessary biases when the true parameters are
large
parsimonious models cannot be produced

Nonconcave penalities

select variables and estimate coefficients of variables
simultaneously
e.g. hard thresholding penalty (HARD, Antoniadis 1997)

pλ(|θ|) = λ2 − (|θ| − λ)2I (|θ| < λ)

with thresholding rule

θ̂ = z · I (|z | > λ)
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Penalty functions

Related approaches

Bridge regression (Frank & Friedman, 1993) which minimizes∑
(yi − β0 −

∑
j βjxij)

2 subject to
∑d

j=1 |βj |γ ≤ t with γ ≥ 0.

Nonnegative garotte (Breiman, 1995), which minimizes∑
(yi − β0 −

∑
j cjβjxij)

2 under the constraint
∑

cj ≤ s

where {β̂j} are the full-model OLS coefficients.

Elastic net (Zou & Hastie, 2005), where the penalty is a
convex combination of the lasso and ridge penalty.

Relaxed Lasso (Meinshausen, 2005).
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SCAD penalty

Smoothly Clipped Absolute Deviation (SCAD; Fan, 1997)

satisfies all three requirements (unbiasedness, sparsity,
continuity)
is defined by

p′λ(|θ|) = λ

{
I (|θ| ≤ λ) +

(aλ− |θ|)+
(a− 1)λ

I (|θ| > λ)

}
, a > 2

with thresholding rule

θ̂(z) =

 sgn(z)(|z | − λ)+, |z | ≤ 2λ
{(a− 1)z − sgn(z)aλ} /(a− 2), 2λ < |z | ≤ aλ
z , |z | > aλ
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Selected penalty and thresholding functions
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SCAD Penalty

SCAD improves the LASSO via reducing estimation bias.

SCAD possesses an oracle property:
the true regression coefficients that are zero are automatically
estimated as zero, and the remaining coefficients are estimated
as well as if the correct submodel were known in advance.

Hence, SCAD is an ideal procedure for variable selection, at
least from theoretical point of view.
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Penalized proportional hazards regression

Penalized partial likelihood

l(β)−
d∑

j=1

pλ(|βj |) → max
β

with

l(β) =
N∑

k=1

[xT
(k)β − log{

∑
i∈Rk

exp(xT
i β)}].

where n = number of observations,
N = number of events,
Rk = risk set for event k, k = 1, ...,N.
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SCAD Regression

SCAD Regression (Fan & Li, 2002)

Use ’LQA’, local quadratic approximation for β close to β0,

l(β0)+∇l(β0)
T (β−β0)+

1
2 (β−β0)

T∇2l(β0)(β−β0)−n 1
2β

TΣλ(β0)β

with Σλ(β0) = diag {p′λ(|β10|)/|β10|, ..., p′λ(|βd0|)/|βd0|}

Solve quadratic maximization problem by Newton-Raphson
algorithm

β1 = β0 − [∇2l(β0)− nΣλ(β0)]
−1[∇l(β0)− nΣλ(β0)β0]

Estimate covariance matrix by sandwich formula

cov(β̂1) = [∇2l(β̂1)−nΣλ(β̂1)]
−1cov(∇l(β̂1))[∇2l(β̂1)−nΣλ(β̂1)]

−1
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SCAD Regression: Local quadratic approximation for pλ(β)

Fan & Li, 2002

SCAD – Penalty:
Local quadratic approximation for pλ(β)
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SCAD Regression for d > n

1 Variable Reduction

Since d > n, we use the Singular Value Decomposition of
(n × d)-design matrix X (Hastie & Tibshirani, 2004):

X = USV T = RV T

With parameter transformation θ = V Tβ perform a single step
of SCAD estimation for θ and transform back to obtain
β̂0 = V θ̂.

2 Variable Selection
Perform SCAD regression (Fan & Li, 2002) with initial estimates
from single step SCAD estimation, and start with

β̂j0 =

{
β̂j0 |β̂j0| ≥ c · se(β̂j0)

0 |β̂j0| < c · se(β̂j0)
, j = 1, ..., d

increase c until |
{
β̂j0 : β̂j0 6= 0

}
| ≤ n

(Hastie & Tibshirani(2004) Efficient quadratic regularization for expression arrays. Biostatistics)
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Penalized Regression: Selecting penalty parameter λ

Selection of thresholding parameter

Estimate λ by minimizing an approximate generalized
cross-validation (GCV) statistic (Craven & Wahba, 1977)
regarding the penalized likelihood as an iteratively reweighted
least-squares problem

GCV (λ) =
−l(β̂)

n[1− e(λ)/n]2

where
e(λ) = tr [(∇2l(β̂)− Σλ(β̂))−1∇2l(β̂)]

computes the effective degrees of freedom (d.f.) for this problem.
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Simulation study

Artificial data (100 cases with ≈ 30 % censoring):

100 data sets consisting of n = 100 observations from the
exponential hazards model h(t|x) = exp(xTβ), where the
d-dimensional parameter vector β is defined as β = (βT

1 , β
T
2 )T ,

βT
1 = (0.8,−1.0, 0.6), βT

2 = 0d−3

βT
1 = (−1.2,−1.0,−0.8,−0.6,−0.4, 0.4, 0.6, 0.8, 1.0), βT

2 =
0d−10

for d = 50, 100, 200, 1000, 10000.

xi marginally standard normal with cor(xi , xj) = 0, i 6= j .

The censoring times were exponentially distributed with mean
U · exp(xTβ), where U is randomly generated from the uniform
distribution over [1, 3] for each simulated data set.
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Simulation study: True and false positives (%)
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Simulation study: Distribution of estimates
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Simulation study: Distribution of estimates
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Applications

Real World Situation:

We observe random variables (T̃ ,∆,X ) for time to event
T̃ = min(T ,C ) and censoring indicator ∆ = I (T ≤ C ), from
some distribution F(T̃ ,∆,X ).

We assume that the conditional censoring distribution
P(C ≤ c |Z ) only depends on the covariates, that is
P(C ≤ c |Z ) = P(C ≤ c |X ),
or, equivalently, that survival time T and censoring time C are
conditionally independent given the covariates X .
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Assessment of model performance

Let S(t) = P(T̃ > t) denote the marginal event-free probability
and π̂(t|x) the estimate of conditional survival probabilities S(t|x)

Let Y = I (T̃ > t∗) for a fixed time point t∗.

Brier score to measure inaccuracy (Graf et al., 1999)

Brier score loss function: ψ(Y , π̂) = (Y − π̂(t∗|x))2

Brier score for time point t∗: BS(t∗) = 1
n

∑n
i=1 ψ(yi , π̂(t∗|xi ))

Integrated Brier score: IBS(τ) =
∫ τ

0
BS(t)dW (t)

with weight function W (t) = 1/τ or W (t) = (1− Ŝ(t))/(1− Ŝ(τ)).
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Algorithms and Software

LASSO coxpath, R package glmpath, version 0.92, 2006/06/06

SCAD R package scad, version 0.53, 2006/05/15 (not released
yet).

BOOSTING R package mboost, version 0.3-6, 2006/05/10 (not
released yet).

Axel Benner Statistical Learning for Analyzing Functional Genomic Data

Application: AMLSG study

Cytogenetic findings provide a predictive factor in Adult Acute
Myeloid Leukemia treatment
The karyotype is used to classify patients as being at

low risk t(8;21), t(15;17), or inv(16),
intermediate risk normal karyotype or t(9;11),
high risk inv(3), -5/del(5q), -7, or complex karyotype [ ≥ 3 aberrations]

Grimwade et al. (1998) Blood Axel Benner Statistical Learning for Analyzing Functional Genomic Data

Application: AMLSG study

L. Bullinger et al. (NEJM, 2004)
Use of Gene-Expression Profiling to Identify Prognostic Subclasses
in Adult Acute Myeloid Leukemia

136 patients with normal karyotype from AML HD98-A
(16-60 years) study
54 peripheral-blood samples and 82 bone marrow specimens

42 patients with normal karyotype from AML HD98-B (>60
years) study
27 peripheral-blood samples and 15 bone marrow specimens

cDNA microarrays manufactured by the Stanford Functional
Genomics Facility
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Application: AMLSG study

136 patients from AML HD98-A with normal karyotype

Estimated median follow up was 45 months since first diagnosis.

Prognostic models were built using clinical data and microarray
measurements.

10-fold cross-validation: Integrated Brier score

Method IBS (3 years follow-up) Explained variation

Kaplan-Meier 0.1997 -
coxpath
scad
glmboost
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Comments

SVD works for Cox’ proportional hazards regression with
ridge/scad penalty

Low bias for SCAD estimates

Results were comparable with respect to prediction error

Statistical software for survival analysis in the d > n situation
is still ”work in progress”
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Attachment: Brier Score for censored data at time point t∗

Three categories contribute to score:
Category 1: T̃i ≤ t∗ and ∆i = 1 =⇒ (0− π̂(t∗|x))2

Category 2: T̃i > t∗ (∆i = 1 or ∆i = 0) =⇒ (1− π̂(t∗|x))2

Category 3: T̃i ≤ t∗ and ∆i = 0 =⇒ event status at t∗ unknown

Compensate for loss of information by reweighting:
Category 1: weight 1/ĜT

Category 2: weight 1/Ĝt∗

Category 3: weight zero

G is Kaplan-Meier estimate of censoring distribution.
Brier score loss function for censored data:

ψ(y , f ) = (Y − f (x))2

= (0− f (x))2I (T̃ ≤ t∗,∆ = 1)(1/ĜT )

+(1− f (x))2I (T̃ > t∗)(1/Ĝt∗)
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Attachment: Ensemble Learning

Inverse Probability of Censoring Weights

Here we observe random variables (Ỹ ,∆,X ) where
Ỹ = log(T̃ ) for time to event T̃ = min(T ,C ) and censoring
indicator ∆ = I (T ≤ C ), from some distribution F(Ỹ ,∆,X ).

Replace the full data loss function L(Y , ψ(X )) by an observed
data loss function L(Ỹ , ψ(X )|η) with nuisance parameter η.

Inverse probability of censoring weights (IPC weights): the
nuisance parameter η is given by the conditional censoring
survivor function G

L(Ỹ , ψ(X )|G ) = L(Ỹ , ψ(X ))
∆

G (T̃ |X )

Let w = (w1, ...,wn), where wi = ∆i Ĝ (T̃i |Xi )
−1, denote the

IPC weights.
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Random Forests

Random Forest for censored data

Step 1 (Initialization). Set m = 1 and fix M > 1.

Step 2 (Bootstrap). Draw a random vector of case counts
vm = (vm1, ..., vmn) from the multinomial distribution with
parameters n and(

∑n
i=1 wi )

−1w.

Step 3 (Base Learner). Construct a partition
πm = (Rm1, ...,RmK(m)) of the sample space X into K (m)
cells via a regression tree. The tree is built using the learning
sample L with case counts vm, i.e., is based on a
perturbation of the learning sample L with observation i
occurring vmi times.

Step 4 (Iteration). Increase m by one and repeat steps 2 and 3
until m = M.
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Random Forests

For quadratic loss L(Y , (X )) = (Y − ψ(X ))2, the prediction is
simply the weighted average of the observed (log)-survival
times

By definition, the weights wi , and thus the case counts vmi as
well as the prediction weights, are zero for censored
observations.

The prediction weights approach is essentially an extension of
the classical (unweighted) averaging of predictions extracted
from each single partition (cf. Breiman 1996).

In step 3 of the algorithm the partitions are usually induced by
some form of recursive partitioning with additional
randomization. This can be implemented by using only a
small number of randomly selected covariates for further
splitting of every node of the tree.
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L2-Boosting for censored data

Weighted least squares problem

ϑ̂Ũ,X = argminϑ

n∑
i=1

wi (Ũi − h(Xi |ϑ))2

with pseudo responses

Ui = − ∂L(Ỹi , ψ)

∂ψ

at ψ = f̂m(Xi )
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Boosting for censored data

Generic gradient boosting for censored data

Step 1 (Initialization). Define Ũi = Ỹi (i = 1, ..., n), set m = 0,
and f̂0(·) = h(·|ϑ̂Ũ,X ). Fix M > 1.

Step 2 (Gradient). Compute the residuals

Ũi = − ∂L(Ỹi , ψ)

∂ψ

at ψ = f̂m(Xi ) and fit the base learner h(·|ϑ̂Ũ,X ) to the new

response Ũi by weighted least squares.

Step 3 (Update). Update f̂m+1(·) = f̂m(·) + νh(·|ϑ̂Ũ,X ) with step
size 0 < ν ≤ 1.

Step 4 (Iteration). Increase m by one and repeat steps 2 and 3
until m = M.

Note, that the number of iterations, M, is a tuning parameter,
which needs to be determined via cross-validation.
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Attachment: Oracle Property

β̂ = (β̂T
1 , β̂

T
2 )T satisfyies

(a) Sparsity: β̂2 = 0

(b) Asymptotic normality:

√
n(I1(β10) + Σ)

{
β̂1 − β10 + (I1(β10) + Σ)−1b

}
→ N (0, I1(β10))

in distribution where I1(β10) = I1(β10, 0), the Fisher information
knowing β2 = 0.
Here b = (p′λ(|β10|)sgn(β10), ..., p

′
λ(|βs0|)sgn(βs0))

T and s is the
number of components of β10.

For more details see Fan & Li (2001).
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