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Overview

• Introduction to QTL mapping

• Analysis of QTL data

– modified BIC

– Robust methods

• Implementation and Simulations in R
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Locating quantitative trait loci (QTL)

Quantitative trait:

evolution occurred in small steps

characters, that are influenced by many genes

Many relevant traits are quantitative: height, yield, ...

Quantitative trait locus (QTL):

gene (functional sequence of bases) that influences

a certain quantitative trait

Relevant questions:

- How many genes influence a trait (How many QTL)

- Find exact positions of QTL

(- estimate size of genetic effects)
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Background

• A gene can obtains different forms (alleles)

• contribution of genetic effects to total (phenotypic) variation of a trait 

(heritability) determines rate at which characters respond to selection. 

(environmental variance reduces efficiency of response)

trait value = genetic influence + environmental influence

• partitioning genotypic variance into components with different impact on 

selection:  additive, non-additive gene effects (epistasis)

-> dependency on background population

evolutionary reason: stabilization of phenotype

phenotype: the form taken by some character in a specific individual.

genotype: genetic makeup of individual
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Data from experimental crosses
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Data matrix for backcross design

Indiv. QT marker.1 marker.2 ... marker.m

1 34.3 AA Aa ... AA

2 65.4 Aa AA ... *

3 23.2 Aa * ... Aa

4 45.4 AA AA ... Aa

... .... ... ... ... ...

~ 50-500 markers

~ 200 – 1000 individuals
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Genetic map
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Distance between markers is 

usually estimated from 

recombination frequency

If marker is close to QTL, then 

marker genotype will be 

associated with QTL genotype

(There would be a 1-1

correspondence, if there were 

no recombinations)

No linkage between 

chromosomes
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Analysis of QTL data

Find NUMBER, POSITIONS, EFFECT TYPES and SIZES of QTL

Challenges:

• large number of possible models 

(main effects + interactions = m + m(m-1)/2  ~ 100 + 5.000)

-> efficient search strategy

-> correct for test multiplicity

• deviation from normality of conditional distribution of trait given marker 

genotypes (especially when heavy tails or outliers)

• recover unobserved / wrong / missing genotype information

• confounding of effect types

• selection bias for effect sizes, especially for small effects
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Methods for QTL mapping

marker based

univariate

estimation of QTL location

ANOVA on single

markers

multiple

- interval mapping

- composite interval 

mapping

multiple regression

- conditional interval mapping

- multiple interval mapping

- Bayesian (Sen & Churchill)

strict Bayesian

approach
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Multiple regression approach

Xij: genotype of the ith individual (out of n) at the jth marker (out of m).

Xij = ½ if individual has genotype AA (homozygous)

Xij = -½ if individual has genotype Aa (heterozygous)

I: subset of the set N = {1,...,m} marker

U: subset of N x N

εi : random error term with distribution f

Robust Methods for QTL Mapping in R Andreas Baierl 11

Model selection

aim: identify correct model, not minimise prediction error

-> criterion for inclusion and exclusion of variables

• cross validation / bootstrap 

• AIC: n log (RSS) + 2k/n minimises prediction error 

• BIC: n log (RSS) + k log(n) more conservative than AIC, 

especially for small n

n: sample size 

k = p + q = number of main effects (p) and interaction effects (q) under consideration

RSS: residual sum of squares (assuming normal error distribution !)

-> efficient search strategy

forward selection + backward elimination step
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BICMi: BIC of 1-dimensional

Model Mi

N: Number of 1-dim models

n: sample size  

BIC chooses too many QTL

every model has the same 

probability to be selected 

-> more likely to select 

large model.
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modified BIC

E(p) = E(q) = 2.2 controls the Type I error at a level of of 5% (for n = 200)

Additional penalty term dependent on number of predictors under consideration

(Bogdan et al 2004)

modified BIC

with

E(p): expected number of main effects

E(q): expected number of epistasis (=interaction) effects
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Deviations from Normality

• Typically, non-parametric methods based on ranks are used

• Here we use robust regression techniques, in particular M-Estimators: 

minimise other measure of distance instead of residual sum of squares. 

popular alternatives are:
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Robust model selection criterion 

still consistent under quite general conditions on the error distribution 

(Martin, 1980)

but performance of BIC*
ρ depends on ρ and error distribution:

Jurečkova and Sen (1996) derived limiting distribution for 
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Limiting Distribution

We showed that

has the following property:

with
and error distribution f(x)
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Values for normalisation constant ce

for L2  ce = 1
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Robust mBIC

In practice, ce and therefore the error distribution f(x) have to be estimated. 

This leads to a robust version of the mBIC:

with
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Simulation Setup

2 chromosomes with 11 marker each (m=22)

200 individuals (n=200)

1 additive effect

1 epistasis effect

error distributions:

Normal, Laplace, Cauchy, Tukey, χ2

estimators:

L2, Huber (k=0.05) ~ L1, Huber (k=1.3), Bisquare, Hampel
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Simulation Results
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Implementation in R

• Robust regression using procedure rlm of package MASS

• program structure:

– parameter specification

– generate realisation of genetic setup

– estimation of error distribution and ce

– in each forward step: estimate likelihood for m + m(m-1)/2 models

– generate output 

• simulations:

– 1000 replications

– n=200-500, m=20-120
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