

Implementation of robust methods for locating quantitative trait loci in R

Andreas Baierl and Andreas Futschik

Institute of Statistics and Decision Support Systems University of Vienna

- Introduction to QTL mapping
- Analysis of QTL data
 - modified BIC
 - Robust methods
- Implementation and Simulations in R

Robust Methods for OTL Mapping in R	Andreas Baierl 3	Robust Methods for OTL Mapping in R	Andreas Baierl 4
(- estimate size of genetic effects)		phenotype: the form taken by some character in a specific individual. genotype: genetic makeup of individual	
- Find exact positions of QTL			
- How many genes influence a trait (How many QTL)		evolutionary reason: stabilization of phenotype	
Relevant questions:		-> dependency on background population	
		selection: additive, non-additive gene effects (epistasi	s)
a certain quantitative trait		• partitioning genotypic variance into components with d	lifferent impact on
gene (functional sequence of bases) that influences			
Quantitative trait locus (QTL):		trait value = genetic influence + environmental influen	ce
Many relevant traits are quantitative: height, yield,		(environmental variance reduces efficiency of response	2)
characters, that are influenced by many genes		(heritability) determines rate at which characters respo	ond to selection.
evolution occurred in small steps		contribution of genetic effects to total (phenotypic) var	iation of a trait
Quantitative trait:			
		 A gene can obtains different forms (alleles) 	
Locating quantitative trait loci (QTL)	universitä Wien	t Background	wien wien
Robust Methods for QTL Mapping in R	Andreas Baierl 1	Robust Methods for QTL Mapping in R	Andreas Baierl 2

Data from experimental crosses

Indiv.	QT	marker.1	marker.2	 marker.m
1	34.3	AA	Aa	 AA
2	65.4	Aa	AA	 *
3	23.2	Aa	*	 Aa
4	45.4	AA	AA	 Aa

Data matrix for backcross design

 \sim 200 – 1000 individuals

 Robust Methods for QTL Mapping in R
 Andreas Baierl
 5
 Robust Methods for QTL Mapping in R
 Andreas Baierl
 6

 Genetic map
 Image: Marcine Structure
 Analysis of QTL data
 Image: Marcine Structure
 Andreas Baierl
 6

universität wien

Genetic map

Distance between markers is usually estimated from recombination frequency

If marker is close to QTL, then marker genotype will be associated with QTL genotype (There would be a *1-1* correspondence, if there were no recombinations)

No linkage between

chromosomes

Find NUMBER, POSITIONS, EFFECT TYPES and SIZES of QTL

Challenges:

- large number of possible models

 (main effects + interactions = m + m(m-1)/2 ~ 100 + 5.000)
 -> efficient search strategy
 - -> correct for test multiplicity
- deviation from normality of conditional distribution of trait given marker genotypes (especially when heavy tails or outliers)
- recover unobserved / wrong / missing genotype information
- confounding of effect types
- selection bias for effect sizes, especially for small effects

~ 50-500 markers

Methods for QTL mapping

$$Y_i = \mu + \sum_{j \in I} \beta_j X_{ij} + \sum_{(u,v) \in U} \gamma_{uv} X_{iu} X_{iv} + \varepsilon_i$$

X _{ij} : genot	ype of the <i>ith</i> in	dividual (out c	of n) at the j ⁱ	th marker (out of <i>m</i>).
$X_{ij} = 1$	∕₂ if individual h	as genotype A	A (homozyg	ous)	
$X_{ij} = -$	1⁄2 if individual I	has genotype	Aa (heterozy	/gous)	

I: subset of the set $N = \{1, ..., m\}$ marker U: subset of $N \times N$

 $\nabla 0$ T

 ε_i : random error term with distribution f

n

large model.

modified BIC

Additional penalty term dependent on number of predictors under consideration (Bogdan et al 2004)

modified BIC

$$mBIC = n \log RSS + (p+q) \log n + 2p \log(m/E(p) - 1) + 2q \log(m(m-1)/2/E(q) - 1)$$

with

E(*p*): expected number of main effects

E(q): expected number of epistasis (=interaction) effects

E(p) = E(q) = 2.2 controls the Type I error at a level of 5% (for n = 200)

Robust Methods for QTL Mapping in R

Deviations from Normality

 Here we use robust regression techniques, in particular M-Estimators: minimise other measure of distance instead of residual sum of squares.
 popular alternatives are:

$$\rho_{Huber}(x) := \begin{cases} k|x| - k^2/2 \text{ for } |x| > k\\ x^2/2 \text{ for } |x| \le k \end{cases}$$

$$\rho_{Bisquare}(x) := \begin{cases} k^2/6 \text{ for } |x| > k\\ \frac{k^2}{6} [1 - (1 - (\frac{x}{k})^2)^3] \text{ for } |x| \le k \end{cases}$$

$$\rho_{Hampel}(x) := \begin{cases} a(b - a + c)/2 \text{ for } |x| > c\\ a(b - a + c)/2 - \frac{a(|x| - c)^2}{2(c - b)} \text{ for } b < |x| \le c\\ a|x| - a^2/2 \text{ for } a < |x| \le b\\ x^2/2 \text{ for } |x| \le a \end{cases}$$

Andreas Baierl

Andreas Baierl

13

15

universität

wien

universität wien

Robust Methods for QTL Mapping in R

Andreas Baierl 14

universität wien

$$BIC_{\rho}^* := n \log \sum_{i=1}^n \rho(Y_i - x_i'\hat{\theta}) + k \log(n)$$

Robust model selection criterion

still consistent under quite general conditions on the error distribution (Martin, 1980)

but performance of BIC_{ρ}^{*} depends on ρ and error distribution:

Jurečkova and Sen (1996) derived limiting distribution for

$$\sum_{i=1}^{n} \left(\rho(Y_i - x'_i \hat{\theta}_1) - \rho(Y_i - x'_i \hat{\theta}_2) \right)$$

Robust Methods for QTL Mapping in R

Limiting Distribution

1.267

Normal

error distr. Huber_k=0.05 Huber_k=1.345 Bisquare Hampel

1.096

1.105

1.037

as Baierl

universität wien

18

We showed that

$$D_n = n(\log \sum \rho(Y_i - x'_i \hat{\theta}_1) - \log \sum \rho(Y_i - x'_i \hat{\theta}_2))$$

has the following property:

bust r	nBIC		<i>wiversität</i>	Simul	ation Se	etup			
Robust Metl	hods for QTL Map	ping in R	Andreas Baierl 17	Robus	t Methods for C	ods for QTL Mapping in R		Andr	
		$\delta = \int \rho(x) f(x) dx$			for $L_2 c_e =$	= 1			
		$\sigma_\psi^2 = \int \psi(x)^2 f(x) dx$			χ^2_{med}	1.291	1.259	1.254	1.192
	$c_e = \frac{1}{\sigma_{\psi}^2} \qquad \gamma = \int \psi'(x) f(x) dx$			χ^2	1.197	1.148	1.161	1.145	
with	$2\gamma\delta$	$\psi(x) = \rho'(x)$	and error distribution $f(x)$		2				
					Tukey	1.768	1.925	1.359	1.564
$c_e D_n$	$\xrightarrow{a} \chi^2_{(p_2+q_2)}$	$-(p_1+q_1)$			Cauchy	*	*	2.199	2.407
_	d a				Laplace	1.970	1.436	1.410	1.291

In practice, c_e and therefore the error distribution f(x) have to be estimated.

This leads to a robust version of the mBIC:

$$mBIC = \hat{c}_e n \log \sum \rho(Y_i - x'_i \theta) + (p+q) \log n + 2p \log(m/E(p) - 1) + 2q \log(m(m-1)/2/E(q) - 1)$$

with
$$\hat{c}_e = rac{2\hat{\gamma}\hat{\delta}}{\hat{\sigma}_\psi^2}$$

Ro

- 1 additive effect
- 1 epistasis effect

error distributions: Normal, Laplace, Cauchy, Tukey, χ^2

estimators:

 L_2 , Huber (k=0.05) ~ L_1 , Huber (k=1.3), Bisquare, Hampel

Simulation Results

universität wien

Implementation in R

Percentage correctly identified effects and false discovery rate

- Robust regression using procedure *rlm* of package *MASS*
- program structure:
 - parameter specification
 - generate realisation of genetic setup
 - estimation of error distribution and ${\rm c}_{\rm e}$
 - in each forward step: estimate likelihood for m + m(m-1)/2 models
 - generate output
- simulations:
 - 1000 replications
 - n=200-500, m=20-120

Robu	ust Methods for QTL Mapping in R	Andreas Baierl	21	Robust Methods for QTL Mapping in R	Andreas Baierl	22
Refer	rences	wien	sität			
• Ba	aierl, A., Bogdan, M., Frommlet, F., Futschik, A., 2006. On Loo Iteracting quantitative trait loci in intercross designs. To appea	cating multiple or in Genetics.				
• Bo Ir 1	ogdan, M., J. K. Ghosh and R. W. Doerge, 2004. Modifying the nformation Criterion to Locate Multiple Interacting Quantitative 67: 989-999.	e Schwarz Bayesian e Trait Loci. Genetics,				
• Bi id	roman, K. W. and T. P. Speed, 2002. A model selection appro- lentification of quantitative trait loci in experimental crosses. J 41-656.	ach for the Roy Stat Soc B, 64 :				
• Ju in	ureckova, J., Sen, P.K., 1996. Robust statistical procedures: a aterrelations. Wiley, New York.	symptoticsand				
• S	en and Churchill (2001), A Statistical framework for quantitati enetics, 159 :371-387.	ve trait mapping,				