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We present an MCMC algorithm to parsimoniously estimate the random-effects
covariance matrix in hierarchical linear mixed models. The definite structure of
zero and non-zero elements in the variance-covariance matrix is chosen in a data-
driven manner in the course of the modeling procedure. Thereby model selection
with regard to fixed versus random effects is automatically included. We specify a
straightforward MCMC scheme for joint selection of elements of the random-effects
covariance matrix and parameter estimation.

We write the model in the non-centered parameterization, see e.g. [3], which is
based on the Cholesky decomposition of the random-effects covariance matrix: Q =
C ·C ′, with a lower triangular C. The structure of this model representation allows
to identify zeros in the Cholesky factors by common variable selection methods,
[2]. This approach is related to ideas of [4], who introduced covariance selection for
multivariate normal data.

We contribute to on-going research about random-effects models in various re-
spects. The non-centered parameterization with the above Cholesky decomposition
allows us to choose a conditionally conjugate normal prior for C and automatically
leads to non-negative definite covariance matrices. A straightforward Gibbs sam-
pling scheme may easily be derived but contrary to the common inverted Wishart
prior our new prior is less influential on posterior inference. Existing approaches
to estimate a parsimonious variance-covariance matrix are by [4], who select off-
diagonal elements and by [1], who determine whole rows and columns as zero or
non-zero. Our choice of the Cholesky decomposition makes it possible to determine
zeros and non-zeros for each element of the variance-covariance matrix. The ability
to specify the finer structure of the random-effects covariance matrix turned out to
be of hight importance in real applications with higher dimensional parameters.

New R-code is developed for this method and a real-data example from marketing
is given as an illustration.
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