
Can R Speak Your Language?

Brian D. Ripley

Professor of Applied Statistics
University of Oxford

ripley@stats.ox.ac.uk

http://www.stats.ox.ac.uk/∼ripley

Languages

The lingua francaof computing is (American) English.

R uses English for its keywords and its (several thousand) built-in functions.

However, thedata used in computing can be in any human language (or
none). One issue is torepresentthat data: we will discusscharacter sets
(akacharsets) shortly. Another is to display the data in a human-readable
form, both on the console and on graphics devices.

Part of the data is information related to the packages themselves. This
includes the manuals, help files and so on. The terser the information, the
harder it is for non-native speakers to comprehend: this applies especially
to menus and information/warning/error messages.

Internationalization(aka i18n) is the process of enabling support for data
and messages in different languages.
Localization(akai10n) is the process of adding language-specific features,
such as translations of messages.

Character Sets

Long ago encodings such as EBCDIC and ASCII were developed to rep-
resent characters in decimal and binary computers. The ‘A’ abbreviates
American, and these only handled upper- and lower-case letters A-Z, digits,
punctuation symbols, American currency ($ but not cent), and some ‘odds’
such as# % * + / \ ^ _ | ~.

Characters vs glyphs

A character is an abstract concept, and a glyph is a visual representation of
it.

Did ASCII mean minus or hyphen by-? It matters both in interpretation
and display in proportionally-spaced fonts.

What is’? An apostrophe, a quotation mark, an accent?

What is‘? A quotation mark or an accent?

What is~? A tilde accent or more like∼?

Character Sets II

People writing non-American English (even UK English) need other char-
acters sets. Initially there were many proprietary extensions (DEC, HP,
MacRoman, Windows), but a fairly small number of character sets became
common. These represent up to 255 characters, using a single 8-bit byte for
each character. Examples include ISO 8859-1 (aka Latin 1) and KOI8-R.

Single-byte encodings cover most of the world’s languages. (Vietnamese
uses perhaps the most characters of these.) The exceptions are Chinese,
Japanese, Korean (CJK) and languages with diacritical marks like Thai.
CJK languages have tens of thousands of characters (and more glyphs). A
number of ‘shift’ coding systems were developed, such as EUC-JP and the
Windows code pages CP932, 936, 949 and 950.

Note that these character sets only allow a small set of languages at a time
(in addition to English), not for example German and Polish.



Unicode

The grand vision was to have a character set to represent all human lan-
guages at once that would be used everywhere.

The nearest we have inUnicode. This has221 slots for characters, and most
have now been filled with human languages and other forms of notation.

That leaves the question of how those221 slots are represented as data. Two
main ways have emerged.

UTF-8 Each character is represented by one to four bytes, with ASCII using
one. [Used by most Unix-alikes, but only recently.]

UCS-2 Most characters are represented by two bytes, those with code over
216 by four. [Used by NT-based Windows for a decade, but characters
beyond216 are turned off by default.]

Unfortunately, OSes that support one tend not to support the other, so R has
to cope with both, as well as with older OSes (e.g. Windows 98) that support
neither.

Internationalization of R

The major task was to add support of multi-byte character sets (MBCS),
which was added in R 2.1.0 in April 2005. By that time Linux systems set
up to use UTF-8 were becoming common, and MacOS X is in part based on
UTF-8. The task was non-trivial, as all operations on character strings had
to be reviewed and if necessary converted to work with characters and not
bytes.

At the same time, the standard GNUgettext facilities were grafted onto
R to provide for the translation of messages. Again, this was a larger task
that might be supposed as thegettext system was not designed for an
extensible system, and also for a Unix-alike rather than Windows. Least
trivial of all, someone had to mark up messages for translation, and the
opportunity was taken to rationalize and improve the error messages.

Also at the same time,iconv was added to allow translation between char-
acter sets (as seamlessly as possible) as well as mark-up for the character
encodings used in documentation.

Localization of R

Once translation facilities were in place, volunteers set up translation teams.
We now have partial translations for

Brazilian Portuguese, Chinese (both Simplified and Traditional
orthography), English (as opposed to American), French, Ger-
man, Italian, Korean, Russian and Spanish.

and it is an on-going effort to keep these current.

There are separate localization efforts for the Windows installer and for the
MacOS X console (Dutch, French, German, Italian and Japanese).

Another issue for the CJK languages is that they are displayed with wider
glyphs than ASCII, so that there are no usable mono-spaced fonts. This
means that consoles have had to be rewritten to cope with variable-width
characters.

Localized RGui Consoles



French Russian

Japanese Inputting Text

How does the user input text in a particular language? One way is to use
a suitable keyboard, but even with virtual keyboards that can be tedious if
several languages are involved. Sometimes it is possible to write separate
documents in UTF-8 or UCS-2 and combine them in a suitable editor.

Unicode provides a number (the Unicode point) for all known characters.
This is usually written in hex, e.g. U+201C (left double quotation mark). R
2.3.1 allows this to be entered in the form\u201C wherever the character is
representable in the character set within which R is running.

Characters can always be input in a particular encoding as one or more bytes
by octal or hex escapes, e.g.ń is0xF1 in Latin 2.



Internationalization of Graphics Devices

Displaying non-ASCII glyphs is an issue for text output, but one we can
leave to the OS.

For graphical output, it is an issue we have to address, especially for portable
forms of graphics like PDF. R 2.1.0 provided support for the screen devices,
provided suitable fonts are available. Ensuring that suitable fontsare
available can be tricky, not least on X servers which do not give priority to
finding the right encoding (essentially because there are very few Unicode-
encoded fonts to choose from).

R 2.3.0 provided more support: e.g. on NT-based Windows Unicode output
is used which enables you to output graphics in a different locale from that
R is running in, and also to run R is a locale different from that R is running
in.

PostScript and PDF devices

PostScript and PDF provided a considerable headache, one that Ei-ji
Nakama, Paul Murrell and I worked on for a long time. The relatively easy
part was to provide support for 8-bit encodings, and we have that for almost
all Western and Eastern European languages, including Greek and Cyrillic
(but only for one language group at a time). This can be extended by adding
suitable coding files.

However, Adobe does not make use of Unicode, and the CJK languages
are displayed in so-called CID fonts with private encodings. R 2.3.0
added support for CJK in a small range of easily-available CID fonts for
postscript andpdf.

There are further issues: see the article by Paul Murrell and myself in the
very latest R-News.

Portability Issues

The i18n of R allows you to write in your native language. Should you?

Probably not if your work is to be used outside a strictly controlled envi-
ronment. Once you use any non-ASCII character, there is no guarantee that
your users will see the character you intended, or any character at all! Which
object names are syntactically valid depends on the locale.

It is possible to build R with no support for MBCS or i18n. It is not
uncommon for commercial Unixen to have no support beyond Latin 1.
Microsoft sells ‘Non-international English’ versions of Windows that have
no support for changing language (it even sells them in Europe). And
it is possible to run R in theC locale, which strictly only allows ASCII
characters.

R enforces many of these restrictions on packages, assuming that they will
be run in different environments. This is unfortunate for those who would
like, e.g. to display a banner giving their authorship, but if they realize their
names will most often be mangled they are likely to prefer a transliteration.

Conclusion

We started with

Does R speak your language?



Conclusion

We started with

Does R speak your language?

and the answer is

R is capable of speaking your language.

For most people it has already been taught how.

If you are one of those for which R only has potential, please consider
contributing the localization needed.


