
Simon URBANEK

Department of Computer Oriented Statistics and Data Analysis
University of Augsburg
Germany

Using R in Other Applications

Various practical ways to integrate own software and R

Using R in other applications
Various practical ways to integrate own software and R

Simon Urbanek, University of Augsburg, Germany

Communicating with R

R batch mode (stdin/out/err)

connections and sockets

C/Fortran interface

linking external code into R (e.g. packages)

using R shared library in other programs

3rd party packages and projects
(use mainly C/Fortran interface)

Using R in other applications
Various practical ways to integrate own software and R

Simon Urbanek, University of Augsburg, Germany

R batch mode

library(rpart)
d<-read.table(”/tmp/Rd.txt”,TRUE)
m<-rpart(Class ~ ., data=d,
subset=sample(412,412,TRUE))
print(summary(m))
cat(”$$$\n”)
print(predict(m,newdata=d))
...

stdin

 R process

stdout/err
rpart(formula = Class ~ ., data =
Node number 1: 412 observations,
complexity param=0.8204082
 predicted class=c1
 expected loss =0.3505007
 class counts: 454 245
 probabilities: 0.649 0.351
...

library(rpart)
d<-read.table(”/tmp/Rd.txt”,TRUE)
m<-rpart(Class ~ ., data=d,
subset=sample(412,412,TRUE))
print(summary(m))
cat(”$$$\n”)
print(predict(m,newdata=d))
...

create R code file

stdin

 R process
R CMD BATCH ...

stdout/err
rpart(formula = Class ~ ., data =
Node number 1: 412 observations,
complexity param=0.8204082
 predicted class=c1
 expected loss =0.3505007
 class counts: 454 245
 probabilities: 0.649 0.351
...

process results file

#!/usr/bin/perl
use Cgi;
$cmd=$Cgi::command;
$cmd=~s/\\/\\\\/g; $cmd=~s/\”/\\\”/g;
$tfn=”/tmp/demo”.int(rand(10000)).”.R”;
open OUT,”>$tfn”;
print OUT “library(mylib)\nprocessCmd(\”$cmd\”)\n”;
close OUT;
$res=`R --no-save --slave < $tfn 2>&1`;
unlink $tfn;
print “Content-type: text/html\r\n\r\n”;
print $res;

Example: tiny CGI-script

Using R in other applications
Various practical ways to integrate own software and R

Simon Urbanek, University of Augsburg, Germany

R batch mode

library(rpart)
d<-read.table(”/tmp/Rd.txt”,TRUE)
m<-rpart(Class ~ ., data=d,
subset=sample(412,412,TRUE))
print(summary(m))
cat(”$$$\n”)
print(predict(m,newdata=d))
...

stdin

 R process

stdout/err
rpart(formula = Class ~ ., data =
Node number 1: 412 observations,
complexity param=0.8204082
 predicted class=c1
 expected loss =0.3505007
 class counts: 454 245
 probabilities: 0.649 0.351
...

library(rpart)
d<-read.table(”/tmp/Rd.txt”,TRUE)
m<-rpart(Class ~ ., data=d,
subset=sample(412,412,TRUE))
print(summary(m))
cat(”$$$\n”)
print(predict(m,newdata=d))
...

stdin

 R process

stdout/err
rpart(formula = Class ~ ., data =
Node number 1: 412 observations,
complexity param=0.8204082
 predicted class=c1
 expected loss =0.3505007
 class counts: 454 245
 probabilities: 0.649 0.351
...

advantage

this “interface” is easy to use

potential drawbacks

slow response: full initialization of a new R instance is necessary

data and code must be stored (mostly as text) prior to processing

results must be parsed if further processing is desired

Using R in other applications
Various practical ways to integrate own software and R

Simon Urbanek, University of Augsburg, Germany

Connections and sockets

socketConnection/pipe/fifosocketConnection/pipe/fifo

co <- socketConnection(port=8080, server=TRUE, blocking=TRUE)
s <- req <- readLines(co,1)
cl <-0
while (nchar(s) > 0) {
 s <- readLines(co,1)
 if (length(grep("Content-length:", s, ignore.case=TRUE)) > 0)
 cl <- as.integer(sub("Content-length:[\t]*([0-9]+)","\\1",s))
}
ct <- if (cl>0) readChar(co, cl) else NA
rfn <- sub("^[A-Z]+ ([^]+) .*","\\1",req)

request for the file “rfn” to be handled here ...

close(co)

Example: tiny R-web-server

Using R in other applications
Various practical ways to integrate own software and R

Simon Urbanek, University of Augsburg, Germany

Connections and sockets

advantages

code written entirely in R

R has nice functions for transporting entire R objects
(readBin/writeBin, save/load, serialize-package)
this is especially useful when talking to another R instance

no initialization delay per request

possible drawbacks

R is not really powerful tool for string-parsing tasks

parallel processing of requests is very hard

slow communication (depends on connection type and task)

Using R in other applications
Various practical ways to integrate own software and R

Simon Urbanek, University of Augsburg, Germany

C/Fortran interface

R.bin

library.dynam(”myCode”, ...) myCode.dylib

void myFunction(...)
{
 ...
}

.C(”myFunction”, ...)

myApplication

Rf_eval(...)

... libR.dylib

SEXP Rf_eval(...)
{
 /* evaluate R code */
}

Using R in other applications
Various practical ways to integrate own software and R

Simon Urbanek, University of Augsburg, Germany

C/Fortran interface

advantages

very fast

shortcuts and optimizations possible
(e.g. skip parsing step, keep intermediate objects)

direct data access

possible drawbacks

dangerously low-level, good R knowledge as well as good
programming practice necessary

R is not entirely re-entrant, parallelization must be well thought out

some aspects (e.g. initialization of the R dylib) are platform-
dependent

Using R in other applications
Various practical ways to integrate own software and R

Simon Urbanek, University of Augsburg, Germany

Integrating C code into R

R.bin

library.dynam(”myCode”, ...) myCode.dylib

void myFunction(...)
{
 ...
}

.C(”myFunction”, ...)

Using R in other applications
Various practical ways to integrate own software and R

Simon Urbanek, University of Augsburg, Germany

Examples of integrated C code

most R packages use C/Fortran code for computation

Rggobi integrates ggobi.dylib into R

iPlots integrate interactive graphics into R

Using R in other applications
Various practical ways to integrate own software and R

Simon Urbanek, University of Augsburg, Germany

Parts of the interface

function calls:
.C(”myFunction”, 10.5, “hello”) void myFunction(double *a, char **b)

.Call(”myCall”, 10.5, “hello”) SEXP myCall(SEXP a, SEXP b)

.External(”myExt”, 10.5, “hello”) SEXP myExt(SEXP args)

data allocation and access:
allocVector(VECSXP, 10);
SET_VECTOR_ELT(v, 0, install(”x”));
...

supporting internal R functions:
R_ParseVector(cv, maxParts, status);
eval(expr, rho);
... ... for details see “Writing R Extensions”

Using R in other applications
Various practical ways to integrate own software and R

Simon Urbanek, University of Augsburg, Germany

Integrating R into other software

myApplication

Rf_eval(...)

... libR.dylib

SEXP Rf_eval(...)
{
 /* evaluate R code */
}

Using R in other applications
Various practical ways to integrate own software and R

Simon Urbanek, University of Augsburg, Germany

Integrating R into other software

load or link to R dynamic library (libR.so / R.framework / R.dll)

initialize R engine

Call individual R functions Run R event loop

char *s=”rnorm(100)”;

cv=allocVector(STRSXP, 1);

SET_VECTOR_ELT(cv, 0, mkChar(s));

pr=R_ParseVector(cv, 1, status);

exp=eval(VECTOR_ELT(pr, 1),

 R_GlobalEnv);

double *d=REAL(exp);

initialize R event loop

read

evaluate (Rf_eval...)

print

loop

int ReadConsole(...)

void WriteConsole(...)

Using R in other applications
Various practical ways to integrate own software and R

Simon Urbanek, University of Augsburg, Germany

Integrative issues to consider

R initialization

is system dependent (see sources of R and other interface projects)

R is single-threaded, mostly non-reentrant

R functions should be called only by the R-initializing thread

packages usually cannot use threads (platform-dependent)

R and its event loop

R handles its own event loop (if run normally) - this involves
potential calls of system functions that may interfere with the
program

R graphics devices

“windowed” devices (X11, Quartz, Windows) need an event loop

Using R in other applications
Various practical ways to integrate own software and R

Simon Urbanek, University of Augsburg, Germany

some 3rd party R interfaces using R dylib

(D)COM server

allows Windows programs to access R (ActiveX, Excel plug-in)

Omegahat project

general approach to connectivity (R, S, CORBA, Java, perl, Python, ...)
[some implementations work well, others are incomplete]

Rserve

socket-based server (Java and C clients)

JRI

bi-directional Java/R interface (both eval and REPL)

Obj-C R framework

Obj-C interface to R (used by Cocoa GUI on Mac OS X)

Using R in other applications
Various practical ways to integrate own software and R

Simon Urbanek, University of Augsburg, Germany

Example: using R in a Web-application

libR.dylib

Rserve

servlet

JRclient

Apache / Tomcat

browser

Rserve

offers multiple R instances without initialization delays

servlet

prepares necessary data (user input, files, databases...)

delegates calculations to R via Rserve

 builds proper html code as response (incl. image links if necessary)

Using R in other applications
Various practical ways to integrate own software and R

Simon Urbanek, University of Augsburg, Germany

Example: using R for computations

Using R in other applications
Various practical ways to integrate own software and R

Simon Urbanek, University of Augsburg, Germany

Example: using R for computations

KLIMT
R plugin

libR.dylib

plugin

various plugins:

plugin

JRclient

Rserve

libR.dylib

plugin

R.bin

stdin/stdout

Using R in other applications
Various practical ways to integrate own software and R

Simon Urbanek, University of Augsburg, Germany

Example: full control of R

Using R in other applications
Various practical ways to integrate own software and R

Simon Urbanek, University of Augsburg, Germany

Example: full control of R

libR.dylib

ReadConsole

WriteConsole

evaluate
code-completion
object manager
package manager

JavaGD.dylib

JR
I RE

PL
ev

al

JGR

Using R in other applications
Various practical ways to integrate own software and R

Simon Urbanek, University of Augsburg, Germany

Conclusion

R provides three native interfaces to the outer world

stdin/out/err (batch processing) - slow, text-oriented but simple

connections/sockets - pure R code, good for specialized tasks

C/Fortran interface - fast, but good knowledge of R is needed

R supports various ways of integration

embed own code into R (packages, library.dynam)

use individual R functions in an own code (libR.dylib)

run the R event loop (REPL) - similar to the stdin/out approach

The only limiting aspects are initialization and re-entrance

3rd party packages offer additional interfaces for specific tasks

Using R in other applications
Various practical ways to integrate own software and R

Simon Urbanek, University of Augsburg, Germany

Contact

Simon URBANEK

Department of Computer Oriented Statistics and Data Analysis
University of Augsburg
Germany

simon.urbanek@math.uni-augsburg.de

http://www.rosuda.org/~urbanek

