
S4 Classes and Methods

Friedrich Leisch

R Development Core Group

useR! 2004, Vienna, 22.5.2004

Acknowledgements

S4 has been designed and written by

• John Chambers

These slides contain material by

• Robert Gentleman

• Paul Murrell

• Roger Peng

Friedrich Leisch: S4 Classes and Methods useR! 2004, Vienna, Austria

Overview

• general remarks on object oriented programming

• the S3 class system:

short, but almost complete

• the S4 class system

much longer, but not nearly as complete

Friedrich Leisch: S4 Classes and Methods useR! 2004, Vienna, Austria

Introduction

Some reasons to perform object oriented programming:

1. productivity increase

2. easier to maintain code

3. reusable code

4. the design tends to follow the objects being modeled

5. encapsulate the representation of objects

6. specialize the behavior of functions to your objects

Friedrich Leisch: S4 Classes and Methods useR! 2004, Vienna, Austria

Object Oriented Design

• One identifies real objects and the operations on them that

are interesting. These operations can then be systematically

implemented.

• For example: we might have pdf’s and cdf’s as different

objects, operations might be means, median, maxima and so

on.

• A basic principle (or perhaps hope) is that by faithfully

representing the objects we get easier to implement

functions.

• A cdf object should know how to answer all the cdf questions.

• We want to think of the object in terms of what we want to

do with it, not in terms of how we have implemented it.

Do you (as user) care how it is implemented?

Friedrich Leisch: S4 Classes and Methods useR! 2004, Vienna, Austria

Classes

A class is an abstract definition of a concrete real world object.

Suppose you are writing software to manipulate images. There

are different ways of representing images (JPEG, GIF, PNG,

BMP, . . .) and different types of images (black/white, grey,

color, . . .). Then the objects are images of various types and

any program that implements those objects in a format that

reflects that will be both easier to write and easier to maintain.

A class system is software infrastructure that is designed to

help construct classes and to provide programmatic support for

dealing with classes.

Friedrich Leisch: S4 Classes and Methods useR! 2004, Vienna, Austria

Example: Pixmap Images

• How can we design a class or family of classes to hold pixmap

images?

• Do we need two separate classes for RGB and indexed images

or one class or . . . ?

• What happens if we get an indexed image and need an RGB

image for some computations (e.g., to reduce the amount

of red)?

Friedrich Leisch: S4 Classes and Methods useR! 2004, Vienna, Austria

Example: Pixmap Images

Friedrich Leisch: S4 Classes and Methods useR! 2004, Vienna, Austria

Classes and Objects

• A class is a static entity written as program code designed

to represent objects of a certain type using slots (which in

turn have other classes etc.).

• The class defines how an object is represented in the

program.

• An object is an instance of the class that exists at run time.

• E.g., pixmapRGB is a class, the R logo read into R is an object

that class.

Friedrich Leisch: S4 Classes and Methods useR! 2004, Vienna, Austria

Inheritance

• The hierarchical structure of classes we have seen for pixmap

images is very typical for object-oriented programming.

• Classes pixmapRGB and pixmapIndexed extend class pixmap by

defining additional slots, they inherit from pixmap.

• A class inheriting from another class must have all slots from

the parent class, and may define additional new slots.

Friedrich Leisch: S4 Classes and Methods useR! 2004, Vienna, Austria

Methods

• Once the classes are defined we probably want to perform

some computations on objects. E.g., a natural operation for

images is to plot() them on the screen.

• In most cases we don’t care whether the computer internally

stores the image in RGB or indexed format, we want to see

it on the screen, the computer should decide how to perform

the task.

• The S way of reaching this goal is to use generic functions

and method dispatch: the same function performs different

computations depending on the types of its arguments.

Friedrich Leisch: S4 Classes and Methods useR! 2004, Vienna, Austria

Methods, Classes and the Prompt

• S is rare because it is both interactive and has a system for

object-orientation.

• Designing classes clearly is programming, yet to make S

useful as an interactive data analysis environment, it makes

sense that it is a functional language.

• In “real” object-oriented languages like C++ or Java class

and method definitions are tightly bound together, methods

are part of classes (and hence objects).

• We want incremental/interactive additions (e.g., at the

prompt), like user-defined methods for pre-defined classes.

• S tries to make a compromise, and although compromises

are never optimal with respect to all goals they try to reach,

they often work surprisingly well in practice.

Friedrich Leisch: S4 Classes and Methods useR! 2004, Vienna, Austria

S3 and S4

• The S language has two object systems, known informally as

S3 and S4.

• S3 objects, classes and methods have been available in R

from the beginning, they are informal, yet “very interactive”.

S3 was first described in the “White Book” (Statistical

Models in S).

• S4 objects, classes and methods are much more formal and

rigorous, hence “less interactive”. S4 was first described

in the “Green Book” (Programming with Data). In R it is

available through the methods package, attached by default

since version 1.7.0.

Friedrich Leisch: S4 Classes and Methods useR! 2004, Vienna, Austria

The S3 System

> x <- rep(0:1, c(10, 20))
> x
[1] 0 0 0 0 0 0 0 0 0 0 1

> class(x)
[1] "integer"
> summary(x)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0000 0.0000 1.0000 0.6667 1.0000 1.0000

> y <- as.factor(x)
> class(y)
[1] "factor"
> summary(y)
0 1

10 20

Friedrich Leisch: S4 Classes and Methods useR! 2004, Vienna, Austria

The S3 System

• S3 is not a real class system, it mostly is a set of naming

conventions.

• Classes are attached to objects as simple attributes.

• Method dispatch looks for the class of the first argument

and then searches for functions conforming to a naming

convention:

– foo() methods for objects of class bar are called foo.bar(),

e.g., summary.factor().

– If no bar method is found, S3 searches for foo.default().

– Inheritance can be emulated by using a class vector.

• The system is simple, yet powerful things can be done (take

almost all of R as proof).

Friedrich Leisch: S4 Classes and Methods useR! 2004, Vienna, Austria

S3 Problems

There is no validation whatsoever if objects are valid for a certain

class:

> nofactor <- "This is not a factor"
> class(nofactor) <- "factor"
> summary(nofactor)
numeric(0)
Warning message:
NAs introduced by coercion

> class(nofactor) <- "lm"
> summary(nofactor)
Error in if (p == 0) { : argument is of length zero

The computer should detect the real problem: a character string

is neither a factor nor an lm object.

Friedrich Leisch: S4 Classes and Methods useR! 2004, Vienna, Austria

S3 Problems

Is t.test() a transpose methods for test objects?

> t
function (x)
UseMethod("t")
<environment: namespace:base>
> methods("t")
[1] t.data.frame t.default t.ts*

Non-visible functions are asterisked
> methods(class = "test")
no methods were found

Friedrich Leisch: S4 Classes and Methods useR! 2004, Vienna, Austria

S3 Problems

In package tools:

.makeS3MethodsStopList <-

function(package)

{

Return a character vector with the names of the functions in

@code{package} which ’look’ like S3 methods, but are not.

Using package=NULL returns all known examples

...

> tools:::.makeS3MethodsStopList(package = "stats")
[1] "anova.lmlist" "fitted.values" "lag.plot"
[4] "influence.measures" "t.test"

Of course this works only for base packages!

Friedrich Leisch: S4 Classes and Methods useR! 2004, Vienna, Austria

The S4 system

• define classes: setClass()

• create objects: new()

• define generics: setGeneric()

• define methods: setMethods()

• convert objects: as(), setAs()

• check object validity: setValidity(), validObject()

• access registry: showClass(), showMethods(), getMethod()

• . . .

Friedrich Leisch: S4 Classes and Methods useR! 2004, Vienna, Austria

Defining S4 Classes

setClass (" pixmap",

representation(size=" integer",

cellres =" numeric",

bbox=" numeric"),

prototype(size=integer (2),

cellres=c(1,1),

bbox=numeric (4)))

> new("pixmap")
An object of class "pixmap"
Slot "size":
[1] 0 0

Slot "cellres":
[1] 1 1

Slot "bbox":
[1] 0 0 0 0

Friedrich Leisch: S4 Classes and Methods useR! 2004, Vienna, Austria

Defining S4 Classes

setClass (" pixmapRGB",

representation(red=" matrix",

green =" matrix",

blue=" matrix"),

contains =" pixmap",

prototype=prototype(new(" pixmap ")))

setClass (" pixmapIndexed",

representation(index =" matrix",

col=" character"),

contains =" pixmap",

prototype=prototype(new(" pixmap ")))

Friedrich Leisch: S4 Classes and Methods useR! 2004, Vienna, Austria

Defining S4 Classes

> mypic = new("pixmapIndexed")
> mypic
An object of class "pixmapIndexed"
Slot "index":
<0 x 0 matrix>

Slot "col":
character(0)

Slot "size":
[1] 0 0

Slot "cellres":
[1] 1 1

Slot "bbox":
[1] 0 0 0 0

Friedrich Leisch: S4 Classes and Methods useR! 2004, Vienna, Austria

Defining S4 Classes
> mypic@index <- matrix(1:16, 4)
> mypic@col <- heat.colors(16)
> mypic@size <- dim(mypic@index)
> mypic
An object of class "pixmapIndexed"
Slot "index":

[,1] [,2] [,3] [,4]
[1,] 1 5 9 13
[2,] 2 6 10 14
[3,] 3 7 11 15
[4,] 4 8 12 16

Slot "col":
[1] "#FF0000" "#FF1700" "#FF2E00" "#FF4600" "#FF5D00" "#FF7400" "#FF8B00"
[8] "#FFA200" "#FFB900" "#FFD100" "#FFE800" "#FFFF00" "#FFFF20" "#FFFF60"

[15] "#FFFF9F" "#FFFFDF"

Slot "size":
[1] 4 4

Slot "cellres":
[1] 1 1

Slot "bbox":
[1] 0 0 0 0
Friedrich Leisch: S4 Classes and Methods useR! 2004, Vienna, Austria

Defining S4 Methods

setMethod ("show", " pixmap",

function(object){

cat(" Pixmap image\n")

cat (" Type :", class(object), "\n")

cat (" Size :", paste(object@size ,

collapse ="x") , "\n")

cat (" Resolution :", paste(object@cellres ,

collapse ="x") , "\n")

cat (" Bounding box :", object@bbox , "\n")

cat ("\n")

})

setMethod ("plot", " pixmapIndexed",

function(x, y, xlab ="", ylab ="", axes=FALSE , asp =1 , ...){

image(t(x@index[x@size [1]:1 ,]) , col=x@col ,

xlab=xlab , ylab=ylab , axes=axes , asp=asp , ...)

})

Friedrich Leisch: S4 Classes and Methods useR! 2004, Vienna, Austria

Defining S4 Methods

> new("pixmap")
Pixmap image

Type : pixmap
Size : 0x0
Resolution : 1x1
Bounding box : 0 0 0 0

> mypic
Pixmap image

Type : pixmapIndexed
Size : 4x4
Resolution : 1x1
Bounding box : 0 0 0 0

Friedrich Leisch: S4 Classes and Methods useR! 2004, Vienna, Austria

Defining S4 Methods

> plot(mypic)

Friedrich Leisch: S4 Classes and Methods useR! 2004, Vienna, Austria

Object Conversion

For plot()ting we may want to convert RGB images to indexed

images such that we can also use the image() function.

There are already automatic coercion methods provided for us

up and down along the edges of the inheritance tree:

> slotNames(mypic)
[1] "index" "col" "size" "cellres" "bbox"

> mypic1 <- as(mypic, "pixmap")
> slotNames(mypic1)
[1] "size" "cellres" "bbox"

> mypic2 <- new("pixmapRGB", mypic1)
> slotNames(mypic2)
[1] "red" "green" "blue" "size" "cellres" "bbox"

Friedrich Leisch: S4 Classes and Methods useR! 2004, Vienna, Austria

Object Conversion

setAs (" pixmapRGB ", " pixmapIndexed",

function(from , to){

x <- rgb(from@red , from@green , from@blue)

col <- unique(x)

x <- match(x, col)

x <- matrix(x, nrow=from@size [1], ncol=from@size [2])

new(" pixmapIndexed ", size=from@size , index=x, col=col)

})

setMethod ("plot", " pixmapRGB",

function(x, y , ...){

plot(as(x, " pixmapIndexed ") , ...)

})

Friedrich Leisch: S4 Classes and Methods useR! 2004, Vienna, Austria

Object Conversion

> x <- seq(-3, 3, length = 100)
> z1 <- outer(x, x, function(x, y) abs(sin(x) * sin(y)))
> z2 <- outer(x, x, function(x, y) abs(sin(2 * x) * sin(y)))
> z3 <- outer(x, x, function(x, y) abs(sin(x) * sin(2 * y)))
> mypic = new("pixmapRGB", size = dim(z1), red = z1, green = z2,
+ blue = z3)
> mypic
Pixmap image

Type : pixmapRGB
Size : 100x100
Resolution : 1x1
Bounding box : 0 0 0 0

> as(mypic, "pixmapIndexed")
Pixmap image

Type : pixmapIndexed
Size : 100x100
Resolution : 1x1
Bounding box : 0 0 0 0

Friedrich Leisch: S4 Classes and Methods useR! 2004, Vienna, Austria

Object Conversion

> plot(mypic)

Friedrich Leisch: S4 Classes and Methods useR! 2004, Vienna, Austria

Validity Checking

S4 objects are automatically checked for correct types whenever

a slot is modified:

> mypic@size <- "Hello"
Error in checkSlotAssignment(object, name, value) :

Assignment of an object of class "character" is not valid
for slot "size" in an object of class "pixmapIndexed";
is(value, "integer") is not TRUE

In addition, a function can be defined which checks whether an

object is valid. E.g., for pixmap objects one of the two slots size

and cellres is redundant given bbox the other. For valid objects

the information should be consistent.

Friedrich Leisch: S4 Classes and Methods useR! 2004, Vienna, Austria

Validity Checking

setValidity (" pixmap",

function(object){

retval <- NULL

if((object@bbox [3]- object@bbox [1]) !=

object@size [1]* object@cellres [1])

{

retval <- c(retval , " cellres/bbox mismatch for rows")

}

if((object@bbox [4]- object@bbox [2]) !=

object@size [2]* object@cellres [2])

{

retval <- c(retval , " cellres/bbox mismatch for columns ")

}

if(is.null(retval)) return(TRUE)

else return(retval)

})

Friedrich Leisch: S4 Classes and Methods useR! 2004, Vienna, Austria

Validity Checking

> mypic
Pixmap image

Type : pixmapRGB
Size : 100x100
Resolution : 1x1
Bounding box : 0 0 0 0

> validObject(mypic, test=TRUE)
Error in validObject(mypic) :
Invalid "pixmapIndexed" object: 1: cellres/bbox mismatch for rows
Invalid "pixmapIndexed" object: 2: cellres/bbox mismatch for columns

> mypic@bbox <- c(0,0,100,100)
> validObject(mypic)
[1] TRUE

Friedrich Leisch: S4 Classes and Methods useR! 2004, Vienna, Austria

Validity Checking

Of course one could simply use functions to check object validity,

the advantages of setValidity() are:

• Validity checking methods are stored together with class

definitions.

• If slots are themselves objects of classes with validity checks,

they are also (recursively) checked.

Friedrich Leisch: S4 Classes and Methods useR! 2004, Vienna, Austria

Access to the Registry

All classes and methods are stored in a central registry

> showClass("pixmap")
Slots:

Name: size cellres bbox
Class: integer numeric numeric

Known Subclasses: "pixmapRGB", "pixmapIndexed"

on a per-package level:

> plot
standardGeneric for "plot" defined from package "graphics"

function (x, y, ...)
standardGeneric("plot")
<environment: 0x92f9530>
Methods may be defined for arguments: x, y

Friedrich Leisch: S4 Classes and Methods useR! 2004, Vienna, Austria

Access to the Registry

> showMethods("show")
Function "show":
object = "ANY"
object = "traceable"
object = "ObjectsWithPackage"
object = "MethodDefinition"
object = "MethodWithNext"
object = "genericFunction"
object = "classRepresentation"
object = "pixmap"
object = "pixmapIndexed"

(inherited from object = "pixmap")
object = "pixmapRGB"

(inherited from object = "pixmap")
object = "standardGeneric"

(inherited from object = "genericFunction")
object = "function"

(inherited from object = "ANY")

Friedrich Leisch: S4 Classes and Methods useR! 2004, Vienna, Austria

Access to the Registry

> getMethod("show", "pixmap")
Method Definition (Class "MethodDefinition"):

function (object)
{

cat("Pixmap image\n")
cat(" Type :", class(object), "\n")
cat(" Size :", paste(object@size, collapse = "x"),

"\n")
cat(" Resolution :", paste(object@cellres, collapse = "x"),

"\n")
cat(" Bounding box :", object@bbox, "\n")
cat("\n")

}

Signatures:
object

target "pixmap"
defined "pixmap"

Friedrich Leisch: S4 Classes and Methods useR! 2004, Vienna, Austria

Access to the Registry

• selectMethod()

• existsMethod(), hasMethod()

• removeClass(), removeMethod(), . . .

Friedrich Leisch: S4 Classes and Methods useR! 2004, Vienna, Austria

Defining Generics

So far we have only defined new methods for existing generics

(plot, show). To define a new generic simply do

> setGeneric("mygeneric", function(arg1, arg2, arg3) standardGeneric("mygeneric"))
[1] "mygeneric"
> mygeneric
standardGeneric for "mygeneric" defined from package ".GlobalEnv"

function (arg1, arg2, arg3)
standardGeneric("mygeneric")
<environment: 0x8e7e908>
Methods may be defined for arguments: arg1, arg2, arg3

where the number and names of arguments is of course arbitrary

(and may include the special ... argument). One of the main

advantages of S4 generics is that dispatch can depend on the

class of all arguments, not only the first argument.

Friedrich Leisch: S4 Classes and Methods useR! 2004, Vienna, Austria

Defining Generics

A special case is to turn S3 generics to S4:

> boxplot
function (x, ...)
UseMethod("boxplot")
<environment: namespace:graphics>

> setGeneric("boxplot")
[1] "boxplot"
> boxplot
standardGeneric for "boxplot" defined from package "graphics"

function (x, ...)
standardGeneric("boxplot")
<environment: 0x9278c14>
Methods may be defined for arguments: x

Friedrich Leisch: S4 Classes and Methods useR! 2004, Vienna, Austria

Multiple Dispatch

S3 methods have to do a lot of if()... else... computations

to check what their arguments actually are:

> graphics:::plot.factor
function (x, y, legend.text = levels(y), ...)
{

if (missing(y) || is.factor(y)) {
...

}
if (missing(y)) {

barplot(table(x), axisnames = axisnames, ...)
}
else if (is.factor(y)) {

barplot(table(y, x), legend.text = legend.text, axisnames = axisnames,
...)

}
else if (is.numeric(y))

boxplot(y ~ x, ...)
else NextMethod("plot")

}

Friedrich Leisch: S4 Classes and Methods useR! 2004, Vienna, Austria

Multiple Dispatch

> plot(Species, Sepal.Length)

●

setosa versicolor virginica

4.
5

5.
0

5.
5

6.
0

6.
5

7.
0

7.
5

8.
0

Friedrich Leisch: S4 Classes and Methods useR! 2004, Vienna, Austria

Multiple Dispatch

> plot(Sepal.Length, Species)

●●●● ● ●● ●● ● ●●●● ●●●● ●● ●●● ●● ●● ●●● ● ●● ●● ● ●●● ●●●● ● ●● ●● ●●

●● ●● ●● ●● ●●● ● ● ●● ●● ● ●● ● ● ●● ● ● ●●●●●● ● ●● ● ●●●●● ●●● ● ●● ●● ●

●● ●● ● ●● ●● ●●● ●● ● ● ● ●●● ●● ●● ● ●●● ● ● ● ●●●● ●● ●● ●● ●● ●●●● ●●●

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

1.
0

1.
5

2.
0

2.
5

3.
0

Sepal.Length

S
pe

ci
es

Friedrich Leisch: S4 Classes and Methods useR! 2004, Vienna, Austria

Multiple Dispatch

Using dispatch on multiple arguments makes the code much

more transparent:
setMethod ("plot", signature(x=" numeric", y=" factor"),

function(x, y , ...){

boxplot(x~y, horizontal=TRUE , ...)

})

setMethod ("plot", signature(x=" factor", y=" numeric"),

function(x, y , ...){

boxplot(y~x, horizontal=FALSE , ...)

})

> showMethods("plot")
Function "plot":
x = "ANY", y = "ANY"
x = "pixmapIndexed", y = "ANY"
x = "pixmapRGB", y = "ANY"
x = "numeric", y = "factor"
x = "factor", y = "numeric"

Friedrich Leisch: S4 Classes and Methods useR! 2004, Vienna, Austria

Multiple Dispatch

> plot(Sepal.Length, Species)

●

se
to

sa
ve

rs
ic

ol
or

vi
rg

in
ic

a

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

Friedrich Leisch: S4 Classes and Methods useR! 2004, Vienna, Austria

Multiple Dispatch

There are two special “classes” that can be used in method

signatures:

ANY: matches any class, corresponds to S3 default methods

MISSING: the call to the generic does not include this particular

argument, corresponds to if(missing(x)) ... constructs in

the body of function, but makes usage much clearer.

Example:

signature(arg1="factor", arg2="ANY", arg3="matrix",

arg4="MISSING", arg5="ANY")

Friedrich Leisch: S4 Classes and Methods useR! 2004, Vienna, Austria

Getting Help

The question mark operator now has much more features than

just ?topic:

> class ? pixmap
> methods ? plot
> method ? plot("pixmap")
> ? plot(mypic)

Friedrich Leisch: S4 Classes and Methods useR! 2004, Vienna, Austria

Writing Help

Basically you can write documentation for S4 classes and

methods like you do with S3. To enable R to actually find the

correct help pages Rd files need entries like

\alias{pixmap-class}

\alias{pixmapRGB-class}

\alias{plot,pixmap-method}

\alias{coerce,pixmapRGB,pixmapIndexed-method}

\alias{coerce,ANY,pixmapIndexed-method}

promptClass() and promptMethods() create skeleton Rd files for a

given class or method.

Friedrich Leisch: S4 Classes and Methods useR! 2004, Vienna, Austria

Other S4 Features

• group generics & methods

• replacement methods

• calling “next” method

• class unions

• . . .

Friedrich Leisch: S4 Classes and Methods useR! 2004, Vienna, Austria

S4 Problems

• documentation, reference material

• still evolving (although much less than it used to)

• slower than S3

• glitches with name spaces

Friedrich Leisch: S4 Classes and Methods useR! 2004, Vienna, Austria

Current S4 Packages

R base: stats4

CRAN: less than 20 (out of 350+), including Matrix, lme4,

orientlib, flexmix and pixmap

Bioconductor: almost all 50+ packages are S4

Friedrich Leisch: S4 Classes and Methods useR! 2004, Vienna, Austria

Conclusions

• S4 provides object oriented programming within an

interactive environment.

• It can help you a lot to write clean and consistent code, and

checks automatically if objects conform to class definitions.

• Multiple dispatch rather than nested if() ... else con-

structs in the body of functions.

• I personally start all new packages using S4.

Friedrich Leisch: S4 Classes and Methods useR! 2004, Vienna, Austria

