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Putting RGtk to Work
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Abstract

The RGtk package built by Duncan Temple Lang provides one way to
build statistical applications in R which can be controlled by the user through
a graphical user interface. RGtk is an interface to the GTK+ library of the
GNU Project. In this paper an example GUI is built to illustrate usage of the
RGtk package. The basic concepts of widgets and callbacks are demonstrated
so that those familiar with programming in R will be able to build graphical
applications.

1 Motivation

Graphical interfaces to statistical applications are useful for many purposes, in-
cluding avoidance of the command line interface for repetitive analyses by non-
statisticians, and for development of pedagogical tools. In this paper, the motivation
for development will be a particular teaching tool. Any of the computer simulation
modules described in Mills (2002) would be appropriate for a demonstration. I have
chosen a regression demonstration which goes beyond the statistical capabilities of
a spreadsheet, using a resistant regression routine and a smoothing routine. The R
statistical program (Ihaka and Gentleman (1996)) will be used for the underlying
computation. The regression demo is intended as an introduction to the concept
of fitting a straight line to data points. The objective is to help students visualize
how changes in a single point effect the least squares line. The intended audience
for this demonstration is a group of neophytes in statistics; people who would be
uncomfortable with a command-line interface. In fact, even if programming skill
could be assumed, the ideal pedagogical technique would be graphical rather than
command-line oriented so that the student’s attention would be on the data and
results rather than on the code used to invoke the demonstration.

In switching from the command line to a graphical interface, we are changing the
types of events to which the program must respond. The R engine expects command
line inputs, and, if so instructed, can also process mouse clicks in a plotting region
with the locator function. In contrast, the GUI approach requires detection of any
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of many possible user inputs, either by keystrokes in a text window or by mouse
actions. These inputs will be translated into calls to R, and output from such calls
will be used to update the display.

A variety of methods are available for producing graphical interfaces to R pro-
grams. Historically, Dalgaard (2001) introduced the tcltk package as the first in-
terface to a graphical toolkit. Recently there has been a flurry of interest in GUI’s
for R in the Fall of 2002 on the R-Help mailing list http://www.stat.math.ethz.
ch/pipermail/r-help/ continued on http://www.sciviews.org/_rgui/) but no
agreement on a favorite graphical toolkit. Many other graphical toolkits are be-
ing used to develop GUI’s with R, for instance, ObveRsive (http://obversive.
sourceforge.net/), a recent addition, uses the FOX graphical toolkit. Without
claiming that GTK (from GIMP ToolKit, http://www.gtk.org/) is the best graph-
ical toolkit for use with R, I would note that it is GPL, is available for many plat-
forms including GNU/Linux, Unix, MS Windows, and MacOSX. The RGtk interface
to GTK allows an R programmer to utilize the GTK library through R commands
without reverting to programming in another language. Like most toolkits, GTK
contains a full set of graphical tools, but the complexity comes at a price in terms
of learning curve. The remainder of this paper is a brief tutorial describing how the
regression demo can be built in RGtk. Initially a demo will be built with a minimal
set of tools, then more widget will be introduced, and finally another library will
be utilized to improve and extend the demo.

2 GTK

2.1 Widgets

The basic building blocks to be combined into a GUI are called widgets. Those of
particular interest to the R programmer include menus, buttons, sliders, and text
boxes for user input; text boxes and plotting areas for user output. A look ahead at
Figure 1 may be useful to see some of the widgets, including text boxes, which will
can be used. Widgets are typically created, given the desired attributes, and then
packed into windows. With RGtk, control over widgets utilizes the class attributes
of objects to determine which GTK function to call. For example, in the code below,
a simple text widget is created, and text is inserted into the widget.

> textx <- gtkText() ## Creates a widget by calling S_gtk_text_new
> attributes(textx) ## Check its attributes
$class
[1] "GtkText" "GtkWidget" "GtkObject"
> textx$Insert(chars=xtxt, length= nchar(xtxt)) ## or
> gtkTextInsert(textx, chars=xtxt, length= nchar(x))

## both call the C routine S_gtk_text_insert

The last two lines perform the same action because textx$Insert is interpreted
by utilizing the class attribute of textx, GtkText, and is translated into a call
to gtkTextInsert. Similarly one could create an object of class GtkMenu called
menu1 and use menu1$Insert() to invoke the gtkMenuInsert function, a binding
to S_gtk_menu_insert. The code which follows uses the shortened forms wherever
possible.

The process of developing a graphical application involves:

http://www.stat.math.ethz.ch/pipermail/r-help/
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1. Creating appropriate widgets,

2. Displaying the widgets,

3. Capturing user-initiated events, and

4. Updating output based on user inputs.

These four steps will be illustrated as the regression demo is built.

2.2 Widget creation

One starts by creating a window for display. It’s easiest to display the window after
all its internal constituents have been built, so the show argument is initially set to
FALSE.

wRegDemo <- gtkWindow(show=FALSE) ## Create Display Window
wRegDemo$SetTitle("Regression Demo") ## Give it a title

Within the window we want several components. These will be “packed” into boxes.
Boxes can be either vertical or horizontal stacks of widgets. We will use one of each.

box1 <- gtkVBox() ## Create a Vertical box
wRegDemo$Add(box1) ## Add it to the display window
box2 <- gtkHBox() ## Create a Horizontal box

To keep the example simple, the x and y values for the regression will initially be
displayed in text boxes which the user can edit. We will use separate text boxes for
each variable.

x <- sort(round(rnorm(10, 100,10))) ## create some data (or use your own)
makeTextbox <- function(data){

# a function to create and load an editable text box.
box <- gtkText()
box$SetEditable(TRUE) ## Make it user-editable
btxt <- paste(c(deparse(substitute(data)), as.character(data)), collapse="\n")
box$Insert(chars=btxt, length= nchar(btxt))

## Insert the values into the text box
return(box)
}

textx <- makeTextbox(x) ## Create a text box for "x"

The response (y) values are generated from the x’s and inserted as character values
into their own text box.

y <- round(x + rnorm(10,0,4)) ## or use interesting data
texty <- makeTextbox(y) ## Create a text box for "y"

Finally, we need a drawing region, so we will create a drawing area widget. In
order to use a GtkDrawingArea widget as an R graphics device, we also need the
gtkDevice package (Drake, et al. 2003).

require(gtkDevice)
drawArea <- gtkDrawingArea() ## Create the widget
drawArea$SetUsize(300,300) ## specify the size
asGtkDevice(drawArea) ## set as graphics device for R
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2.3 Arranging and displaying widgets

For this simple example, the text and drawing area widgets will be displayed side-
by-side in the horizontal box, box2. The PackStart function places them into box2
from left to right (PackEnd would place them from right to left).

box2$PackStart(textx)
box2$PackStart(texty)
box2$PackStart(drawArea)

The horizontal box is ready to be placed into the vertical box, but first a label
will be added to give the user minimal instructions.

label1 <- gtkLabel( "Change numerical values to move points.")
box1$PackStart(label1)
box1$PackStart(box2)

The only visual missing from our simple demo is the plot of the points. Since this
will be repeated when points are changed, it needs to be a function. The original
data were created above, but the user will be allowed to modify the data, in which
case the plot is redrawn.

redraw <- function(x,y){
## function to plot points and draw regression line
plot(y ~ x, xlab = "x",ylab="y", pch = 16, col=4)
abline(lm(y~x))

}
redraw(x,y)

Finally we change the attribute of the display window to make everything appear,
as shown in Figure 1.

wRegDemo$ShowAll()

2.4 Capturing user interaction and updating

The next task is to build callbacks which will register user inputs and update the
displayed output. In this case, the user needs to be able to change the values
of x and y coordinates. When such changes occur, the demo should redraw the
points and the regression line. Registration of a callback requires specification of
the widget in which an event is to be detected, the type of event to capture, and
the function to be invoked. For the demo, callbacks are needed for each of the two
text windows. When the user inserts text, the data will be updated and the plot
redrawn (no action needed for text deletions).

regDF <- data.frame(x = x, y = y)
callbk <- function(varName,wdgt,...){

tmp <- wdgt$GetChars(start=0, end=wdgt$GetLength())
regDF[[varName]] <<- as.numeric(unlist(strsplit(tmp,"\n"))[-1])
redraw(regDF$x, regDF$y) ## Uses R’s scoping to find regDF

}
textx$AddCallback("insert-text", callbk, "x")
texty$AddCallback("insert-text", callbk, "y")
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Figure 1: Screen-shot of the Simple Regression Demonstration

The above implementation is simple in that it uses only a few widgets, but
clumsy in that if a user is inserting a number which is more than a single character,
the callback is activated for each digit, rather than at the end of the inputs. The
use of the “<<-” assignment operator was needed to change values in the global
environment, but is considered a dangerous programming practice. Use of an “Up-
date” button which the user would click after updating data would remove these
problems. A complete code listing for the improved version with an update button
is given. Frames around the data text boxes have been added to separate labels
from data. The improved regression demo is illustrated in Figure 2 (with some
extra features we’ll soon add).

wRegDemo <- gtkWindow(show=FALSE)
wRegDemo$SetTitle("Regression Demo")
box1 <- gtkVBox()
wRegDemo$Add(box1)
makeTextbox <- function(data){

# a function to create and load an editable text box.
box <- gtkText()
box$SetEditable(TRUE)
btxt <- paste(as.character(data), collapse="\n")
box$Insert(chars=btxt, length= nchar(btxt))
return(box)
}
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x <- sort(round(rnorm(10, 100,10))) ## Generate data (or use your own).
frame.x <- gtkFrame("x") ## Create a frame for "x".
textx <- makeTextbox(x) ## Create a text box for "x"
frame.x$Add(textx) ## place text inside the X frame
y <- round(x + rnorm(10,0,4)) ## or use interesting data
frame.y <- gtkFrame("y") ## Create a frame for "y".
texty <- makeTextbox(y) ## Create a text box for "y"
frame.y$Add(texty) ## placed inside the Y frame
require(gtkDevice)
drawArea <- gtkDrawingArea() ## Create the widget.
drawArea$SetUsize(300,300) ## Specify the size.
asGtkDevice(drawArea) ## Set as graphics device for R.
box2 <- gtkHBox() ## horizontal box filled with:
box2$PackStart(frame.x) ## x data,
box2$PackStart(frame.y) ## y data, and
box2$PackStart(drawArea) ## plotting area
label1 <- gtkLabel( "Change numerical values to move points.")
box1$PackStart(label1)
update1 <- gtkButtonNewWithLabel("Then click to update the plot.")
box1$PackStart(update1)
box1$PackStart(box2)
wRegDemo$ShowAll()
getNewVals <- function(){
## function to read data

x <- as.numeric(unlist(strsplit(textx$GetChars(start=0,
end=textx$GetLength()), "\n")))

y <- as.numeric(unlist(strsplit(texty$GetChars(start=0,
end=texty$GetLength()), "\n")))

return(data.frame(x=x,y=y))
}

redraw <- function(x,y){
## function to plot points and draw regression line
plot(x, y, xlab = "x",ylab="y", pch = 16, col=4)
abline(lmcoef <- lm(y~x)$coef, col=1)
}

redraw(x,y)
update1$AddCallback("clicked", function(...){

xy <- getNewVals()
redraw(xy$x,xy$y)})

3 Extensions

3.1 More widgets

Several other types of widgets will be added to illustrate various capabilities of
RGtk. First, check buttons will be added to allow the user to choose which lines will
be plotted (least squares and/or a robust fit). Each check box has its own callback,
which will be read by the redraw function.
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## Button to choose lm fit
checklm <- gtkCheckButtonNewWithLabel("Show Least Squares Fit",FALSE)
checklm$SetUsize(20,20)
## Button to choose resistant fit
require(MASS) ## (Venables and Ripley, 2002)
checkrlm <- gtkCheckButtonNewWithLabel("Show Resistant Fit", FALSE)
checkrlm$SetUsize(20,20)
checklm$SetActive(TRUE) ## Set lm fit to be drawn initially
checkrlm$SetActive(FALSE) ## Set rlm fit to be undrawn initially

## Add callbacks for the toggled buttons
checklm$AddCallback("toggled", function(...){

xy <- getNewVals()
redraw(xy$x,xy$y)})

checkrlm$AddCallback("toggled",function(...){
xy <- getNewVals()
redraw(xy$x,xy$y)})

## redefine the redraw function to include robust fit
redraw <- function(x,y){

## function to plot points and draw regression line
plot(y ~ x, xlab = "x",ylab="y", pch = 16, col=4)
if( checklm$GetActive() ) abline(lm(y~x), col=1)
if( checkrlm$GetActive() ) abline(rlm(y~x), col=2)

} ## uses R scoping to find checklm and checkrlm

The callbacks are activated whenever the check boxes are “toggled”, meaning when-
ever the user clicks them on or off. Their actions are to invoke the redraw function
which now assesses the state of each check box in order to add – or not – the
appropriate line.

Next, to illustrate the use of a sliding scale, a loess smoother will be added.
(No justification will be made for pedagogical appropriateness.) Whenever the user
moves the slider, the callback to the gtkAdjustment widget will redraw the plot.
The gtkAdjustment function sets up the initial value of the scale, the lower and
upper limits, and the increments of change per mouse-click.

## Define the range of values for loess.span and the increments of movement
# This allows the span to vary from 0 to 1 with increments of .1
smoothness <- gtkAdjustment(.5, 0, 1.1, .1, .1, .25) # .5 is initial value
hscale <- gtkHScale (smoothness)
hscale$SetUsize ( 100, 20)
# Create a callback for when the slider thumb is moved.
smoothness$AddCallback("value-changed", function(...) {

xy <- getNewVals()
redraw(xy$x,xy$y)})

## again, redraw must be modified, adding the line:
lines(lowess(x, y, loess.span), col=4)

In order to pack the new widgets and a label into the display window, I use a table
rather than several boxes, as the table simplifies alignment of multiple widgets.

label2 <- gtkLabel( paste(
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"Smoothness of the Lowess smoother goes from 0 to 1.",
"Move the slider to set the smoothness",sep="\n"), show=FALSE)

# Create table to hold Check Buttons and lowess-smoothness slider
table1 <- gtkTable(3,2, homo=TRUE, show=FALSE)
table1$Attach(checkLM, left.attach=0, right.attach=1,
top.attach=0, bottom.attach=1) ## Top Left Cell

table1$Attach(checkRLM, left.attach=0, right.attach=1,
top.attach=1, bottom.attach=2) ## Bottom Left Cell
table1$Attach(label2, left.attach=1, right.attach=2,
top.attach=0, bottom.attach=1) ## Top Right Cell

table1$Attach(hscale, left.attach=1, right.attach=2,
top.attach=1, bottom.attach=2) ## Bottom Right Cell

Finally, text boxes are added to output the equations of the lines. Unlike those
used for x and y inputs, these are not set as editable. Because the code adds nothing
new, it is not shown here. The completed demo is shown in Figure 2.

Figure 2: Screen-shot of the Completed Regression Demonstration

3.2 RGtkExtra

Several other R packages are available which add more features to RGtk, includ-
ing RGdkPixbuf for image loading and RGtkHTML which allows addition of HTML
content. See the Omegahat web pages, http://www.omegahat.org/download/R/
packages/ for a current list. The regression demo can be improved through use
of the RGtkExtra package (http://www.omegahat.org/RGtkExtra/) which allows
one to use a data sheet widget based on the gtk+extra library (http://gtkextra.

http://www.omegahat.org/download/R/packages/
http://www.omegahat.org/download/R/packages/
http://www.omegahat.org/RGtkExtra/
http://gtkextra.sourceforge.net/
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sourceforge.net/). (The package also provides icon lists and directory trees, but
has the disadvantage of being unavailable for MS Windows platforms. Installing the
gtk+extra library is non-trivial, requiring several other libraries, as documented on
the gtkextra source pages.)

Using the data sheet, the predictor and response can be displayed as a two-
column data grid. When the user changes a cell and presses enter (or a motion
arrow), a callback performs the same updates as before. The code below replaces
the definition of the text boxes for x and y and the getNewVals function above.

if(require(RGtkExtra)){ ## check to see it RGtkExtra is available
## adapted from dataViewer code in RGtkViewers package by D. Temple Lang
sheet <- gtkSheetNew(rows=nrow(reg.frame), cols=2, show = FALSE)
sheet$ColumnButtonAddLabel(0, "x") ## First column label
sheet$ColumnButtonAddLabel(1, "y") ## Second column label
for (i in 1:length(x)) { ## insert data

sheet$SetCellText(i - 1, 0, as.character(x[i]))
sheet$SetCellText(i - 1, 1, as.character(y[i]))

}
getNewVals <- function(){
for(i in 1:length(x)){
newVal <- as.numeric(sheet$CellGetText(i-1, 0))

x[i] <- newVal
newVal <- as.numeric(sheet$CellGetText(i-1, 1))
y[i] <- newVal
}

return(data.frame(x = x,y = y))
}

sheet$AddCallback("set-cell", function(sheet, i, j) {
## Function to replot points and redraw the regression line
xy <- getNewVals()
redraw(xy$x,xy$y)

})
box2$PackStart(sheet)

}
else{## can’t use RGtkExtra

## insert text box code from earlier version here instead
}

Notes: The cell indices returned by GTK are 0-based, so add 1 to use them as
indices in R. One callback for the entire sheet is used, rather than one for x, and
another for y.

The demo using a data sheet is shown in Figure 3.

4 Getting help

RGtk and the extended libraries do not have help pages for each function because
the R functions are merely wrappers to C routines of GTK. The documentation for
the GTK routines are the official sources. To find out what widgets are available,

http://gtkextra.sourceforge.net/
http://gtkextra.sourceforge.net/
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Figure 3: Screen-shot of Regression Demo Using Data Sheet

one can use one of the books about GTK [Martin (2000), Pennington (1999),Lo-
gan (2001),Wright (2000),Griffith (2000)]. Or help is available for GTK routines
on the web. The GTK site offers a reference manual, http://developer.gnome.
org/doc/API/gtk/index.html, and a tutorial, http://www.gtk.org/tutorial/.
Some of the widgets are not currently documented. The developers’ advice is to
read the headers of those widgets to find out what inputs are needed and what
outputs are available. That advice (and the tutorial in general) assumes one can
read and understand C code, but other choices are available. Bindings have been
created to interface Python with GTK. The pygtk tutorial (http://www.moeraki.
com/pygtktutorial/pygtktutorial/) is much easier to translate into R than the
C API version. For Perl users, a useful tutorial is http://personal.riverusers.
com/~swilhelm/gtkperl-tutorial/.

Once a GTK widget has been identified, one needs to know the names of the R
functions which invoke it (using ls) and the arguments expected (using args). In
the following example, all functions associated with CheckButton are listed, and
arguments for one of the functions are shown.

> ls("package:RGtk", patt="CheckButton")
[1] "gtkCheckButton" "gtkCheckButtonNew"
[3] "gtkCheckButtonNewWithLabel"
> args(gtkCheckButtonNewWithLabel)
function (label, show = TRUE, .flush = TRUE)

http://developer.gnome.org/doc/API/gtk/index.html
http://developer.gnome.org/doc/API/gtk/index.html
http://www.gtk.org/tutorial/
http://www.moeraki.com/pygtktutorial/pygtktutorial/
http://www.moeraki.com/pygtktutorial/pygtktutorial/
http://personal.riverusers.com/~swilhelm/gtkperl-tutorial/
http://personal.riverusers.com/~swilhelm/gtkperl-tutorial/
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