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1 Introduction

The construction of a good classifier based on a learning sample can be seen as
a three step procedure. First, we use the observations in the learning sample to
construct different rules. In the second step, we need to choose the best of the
rules from the first step. This is usually done by selecting the rule with minimum
estimated misclassification error. And last, but not least, an honest estimate of the
misclassification error of the selected procedure is required, for example to decide
whether this classifier is good enough to be applied in practical situations or not.
A common problem is that only a small learning sample with a large number of
possible predictors is available and all three steps have to be performed using this
small learning sample.

Two main problems must be resolved. Firstly, we need to choose an appropriate
classifier out of a number of possible candidates, for example linear or tree based
classifiers, neural networks, nearest neighbors or support vector machines. And
secondly, we need to estimate the misclassification error of the selected procedure.
It is well known that the selection of a classification rule with minimum estimated
misclassification error leads to biased estimates of its performance. Nevertheless,
different rules have to be taken into account. In many applications simple rules like
naive Bayes, nearest neighbors or linear discriminant analysis (LDA) perform com-
parably to more advanced classifiers (e.g. Friedman, 1997). However, the individual
classifiers perform well in different situations and fail under different conditions.

One approach to solve both problems simultaneously, i.e. the method selec-
tion and error rate estimation problem, is to apply a combination of classifiers. In
contrast to selecting one single procedure, combining the competitors may improve
classification rules. There are several approaches to the combination of different
classifiers, some classical ones are presented by Ripley (1996), pp. 65. A linear
combination of the estimated conditional class probabilities is suggested by LeBlanc
and Tibshirani (1996) and Mojirsheibani (1997), which is related to linear combina-
tions of regression models (Breiman, 1996c; LeBlanc and Tibshirani, 1996). Merz
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(1999) uses correspondence analysis to combine the prediction of different classi-
fiers. Majority voting of the predictions of the different classifiers is introduced by
Mojirsheibani (1999).

A combination of LDA and classification trees via bagging was introduced by
Hothorn and Lausen (2003b) and generalized to the combination of arbitrary classi-
fiers by Hothorn (2003) and Hothorn and Lausen (2003a). The basic idea is to add
the outcome of arbitrary classifiers (linear discriminant variables, predicted condi-
tional class probabilities or predicted classes), which were trained using only the
out-of-bag observations, to the set of original predictors for bagging of classification
trees (Breiman, 1996a, 1998).

In this paper we will show how the bagging procedure in the ipred package
(Peters, Hothorn, and Lausen, 2002) can be used for both standard bagging as
well as for combining different classifiers. Furthermore, some preliminary results of
benchmark experiments on combined predictors for regression problems are given.

2 Bundling: Combining arbitrary classifiers

Let Ln = {(yi,xi), i = 1, . . . , n} denote a learning sample of n independent obser-
vations consisting of p-dimensional vectors of predictors xi = (xi1, . . . , xip) ∈ Rp

and class labels yi ∈ {1, . . . , J}. A classifier C(x;Ln) predicts future y-values for
a vector of predictors x based on a learning sample Ln. We will use superscripts
to distinguish between classifiers of different origin: C1, . . . , CK , for example LDA,
nearest neighbors, logistic regression, and so on.

Drawing a random sample of size n from the empirical distribution, a bootstrap
sample of size n covers approximately 2/3 of the observations of the learning sample.
The observations which are not in the bootstrap sample are called the out-of-bag
sample and may be used for estimating the misclassification error or for improving
class probability estimates, see Breiman (1996a,b).

In our framework, the out-of-bag sample is used to train C1, . . . , CK . Each
of these classifiers can be used to compute a J − 1 dimensional transformation
of the observations in the bootstrap sample: the values of a linear discriminant
function or estimated conditional class probabilities. These transformations are
used as additional predictor variables offered to a classification tree in each bootstrap
sample: The trees are able to search for splits in the original variables as well as in
transformations of them. This combination is performed as follows:

a) Draw a random sample L∗n with replacement from Ln.

b) Train all classifiers C1, . . . , CK using the out-of-bag observations Ln\L∗n only.

c) Compute the estimated conditional class probabilities (or alternatively the
values of the linear discriminant functions for LDA or predicted classes) for
all observations in the bootstrap sample L∗n and construct a classification
tree based on all original variables as well as the estimated conditional class
probabilities of C1, . . . , CK .

Repeat the procedure B times and classify a new observation x by majority vot-
ing using the predictions of all B trees. Because the outcomes of C1, . . . , CK are
”bundled” by the classification trees, the procedure is called ”bundling”.
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3 Implementation

Trees for nominal, continuous and censored responses are available in the R sys-
tem via the rpart package (Therneau and Atkinson, 1997). The rpart function
can easily be used for bagging classification trees: simply call rpart for bootstrap
samples of the learning sample and concatenate the resulting rpart objects into
a list. The prediction of a new observation is easy, too. Predict the class of the
new observation for each tree in the list and aggregate the predictions by majority
voting (for example using table).

Two main difficulties arise. For bundling, we need to compute additional arbi-
trary user-specified classifiers for each out-of-bag sample and compute their predic-
tions for the bootstrap sample as well as for any new observation to be classified.
Therefore, we need to save the additional classifiers for each bootstrap sample. The
second difficulty is efficiency. Calling rpart 50 times, say, leads to repeated unnec-
essary computations: formula evaluation, determination of the measurement scale
for each predictor and so on. Unfortunately, there is a trade-off between a flexible
implementation and speed. We therefore decided to speed up bagging by modifying
the rpart routine and to generalize bundling at the price of lower efficiency.

The implementation of the rpart routine currently does not separate the eval-
uation of formula objects and the construction of appropriate design matrices from
the tree construction itself which leads to unnecessary computations if multiple trees
are constructed for reweighted observations in the learning sample. Therefore, the
ipred package implements a modified version called irpart which grows multiple
trees without reevaluating formula objects in order to save computing time.

Both bagging and bundling are implemented in the generic ipredbagg which
dispatches on the class of the response: methods for factors (classification) and
numeric responses (regression) as well as responses of class Surv (censored data)
currently exists. A formula based interface to ipredbagg is offered by bagging, a
generic itself which dispatches on the data argument.

bagging(formula, data, subset, na.action, ...)

Currently, only a method for data frames is implemented.
As mentioned in the previous section, the interface to bundling was designed to

allow users to specify additional classifiers in an flexible and easy way. Basically,
a list with two elements is required for each classifier: model and predict, where
model specifies a function for training the classifier and predict is a function for
computing predictions. We require at least two arguments for model: formula and
data. For predict, exactly two arguments are allowed: object and newdata. If
more than one additional classifier should be used, a list of lists with model and
predict elements can be defined for bundling via the comb argument.

For the experiments here, we combine the values of the linear discriminant vari-
ables of a stabilized linear discriminant analysis, the predicted classes of nearest
neighbors (k = 5 and k = 10) and the estimated conditional class probability de-
rived from the logistic regression model. The associated list can be defined as given
here and passed to bagging via its comb argument (we use the Ionosphere data as
example):

R> cbundle <- list(

# stabilized LDA

list(model=slda, predict=function(object, newdata)
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predict(object, newdata)$x),

# 5-NN

list(model=function(...) ipredknn(..., k=5),

predict=predict),

# 10-NN

list(model=function(...) ipredknn(..., k=10),

predict=predict),

# LR or multinomial model, resp.

list(model=function(...) multinom(...,trace=FALSE),

predict=function(obj, newdata)

predict(obj, newdata, type="prob"))

)

R> library(ipred)

R> data(Ionosphere)

R> Ionosphere$V2 <- NULL

R> cmod <- bagging(Class ~ ., data = Ionosphere, comb = cbundle)

R> predict(cmod, Ionosphere[1:8, ])

[1] good bad good bad good bad good bad
Levels: bad good

For each bootstrap sample, the additional classifiers are trained and one single
function bfct for prediction is created in the environment of the current bootstrap
sample. Everytime bfct(newdata) is called, the predictions of the additional classi-
fiers are computed in the corresponding environment (”lexical scoping”, Gentleman
and Ihaka, 2000) and an explicit knowledge of those objects in not needed.

4 Benchmark experiments: Classification

In this section we illustrate the performance of the combination of classifiers via
bundling using three artificial (Twonorm, Threenorm, Ringnorm), four small (Breast
Cancer, Ionosphere, Diabetes, Glass) and three larger (Satellite, Shuttle, DNA)
benchmark problems. The datasets and simulation models are assembled in the
mlbench package (Leisch and Dimitriadou, 2001), ipred version 0.6-14 in R 1.7.0 is
used.

We study bundling of three individual classifiers: stabilized linear discriminant
analysis (sLDA, Läuter, 1992), k nearest neighbors (k-NN, with k = 5 and k =
10) as well as the logistic regression model (LR). The multinomial model is used
for problems with more than two classes. The functions knn and multinom from
the VR bundle accompanying Venables and Ripley (2002) are used. The values of
the linear discriminant functions of the stabilized LDA as well as the predicted
conditional class probabilities of nearest neighbors and the logistic regression model
are combined. For bagging (Bagg) and bundling (Bund), 100 unpruned trees are
used. We additionally report the error rates of random forests with 100 trees (Forest-
RI, Breiman, 2001), R package randomForest (”RF”, Liaw and Wiener, 2002, version
3.4-4), where the number of randomly selected predictors in each node is chosen as
the ceiling of log2(p + 1). Moreover, the error rates of a single tree are reported
(rpart with cp = 0.01).
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Figure 1: Misclassification error of 100 simulation runs for the artificial classification
problems.
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Tree sLDA 5-NN 10-NN LR Bagg Bund RF
Twonorm 24.7 2.5 3.9 3.4 5.1 6.9 2.8 4.8
Threenorm 33.1 17.4 18.4 16.9 17.9 19.6 16.6 17.8
Ringnorm 23.0 38.9 47.4 49.3 38.1 10.0 6.5 7.3
Breast Cancer 5.5 3.4 6.7 8.3 7.3 4.0 2.9 3.1
Ionosphere 12.3 13.9 15.7 16.6 12.5 7.8 6.0 6.4
Diabetes 25.8 26.9 28.6 26.5 22.4 24.3 24.2 23.7
Glass 30.2 42.4 32.7 38.1 35.2 23.0 24.2 21.3
Satellite 16.2 19.3 8.7 9.6 19.2 8.4 7.2 7.6
Shuttle 0.1 8.2 0.4 0.6 2.9 0.1 0.1 0.1
DNA 9.1 8.1 18.6 16.4 10.4 4.6 2.7 5.5

Table 1: Estimated misclassification errors for some of the UCI benchmark prob-
lems.

The misclassification error for the artificial problems is the average over 100
simulation runs, where the learning samples are of size 300 and the error rate is
computed using one single test sample of size 18000. For the larger datasets, a test
sample is selected randomly for the larger problems. The misclassification error for
the smaller problems is estimated by averaging the misclassification error of ten
independent runs of 10-fold cross-validation.

The simulated or estimated misclassification errors for the artificial and real
world benchmark datasets are given in Table 1. A graphical representation of the
simulation results for the artificial problems is shown in Figure 1.

5 Extension to regression problems

The combined classifiers described in section 2 can easily be extended to regression
and survival problems, where the responses are real valued observations yi ∈ R or
censored: yi ∈ R×{0, 1}. In the regression context, the coefficients of a linear model
can be estimated by using the out-of-bag sample. Its predictions on the bootstrap
sample can be used as an additional predictor for regression trees. For censored
responses, the linear predictor of a Cox model can be incorporated into bagging of
survival trees (Hothorn, Lausen, Benner, and Radespiel-Tröger, 2003) by the same
procedure. In contrast to bagging of classification trees, where the trees are grown
until the nodes are pure, it is not obvious when to stop the tree growing for bagging
of regression or survival trees.

The user interface is exactly the same as for classification problems. A com-
bination of a linear model and regression trees for the Ozone data can be trained
by

R> rbundle <- list(list(model = lm, predict = predict))

R> data(airquality)

R> rmod <- bagging(Ozone ~ ., data = airquality, comb = rbundle,

+ control = rpart.control(minsplit = 2, xval = 0, cp = 0))

R> predict(rmod, airquality[1:3, ])

[1] 35.60 27.96 14.08
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Survival-Tree Bagging Bundling Cox-Model
0.174 0.163 0.160 0.163

Table 2: Integrated Brier scores for GBSG2 data.

It is possible to use the linear predictor of a Cox model as an additional variable
for a survival tree with the following lines (data from the German Breast Cancer
Study Group 2 are used as example):

R> sbundle <- list(list(model = coxph, predict = predict))

R> data(GBSG2)

R> smod <- bagging(Surv(time, cens) ~ ., data = GBSG2, comb = sbundle,

+ control = rpart.control(xval = 0))

R> predict(smod, GBSG2[1, ])

[[1]]
Call: survfit(formula = Surv(agglsample[[j]], aggcens[[j]]))

n events rmean se(rmean) median 0.95LCL 0.95UCL
2239.0 1054.0 1649.9 20.4 1684.0 1641.0 1806.0

The integrated Brier score (function sbrier, Graf, Schmoor, Sauerbrei, and Schu-
macher, 1999) can be used as a measure of goodness-of-prediction for the Kaplan-
Meier curves returned by predict. Table 2 gives the average of ten times ten-fold
cross-validated integrated Brier scores for the GBSG2 data.

6 Benchmark experiments: Regression

For the artificial problems Friedman 1, 2 and 3, we use learning samples of size
200 and average the mean squared errors over 100 simulation runs. For the Ozone,
Airquality and BostonHousing data, ten independent runs of ten-fold cross-validation
are used to estimate the mean squared error. 100 trees are used for aggregation in
bagging and bundling. Each tree is grown to the maximum size, although smaller
trees perform better for some of the problems. For bundling, the predictions from
a linear regression model and from a projection pursuit regression model (PPR, R
function ppr with nterms = 2, maxterms = 5) are used as additional predictors.
The results are given in Table 3 and Figure 2.

LM Tree PPR Bagging Bundling
Friedman 1 7.3 11.2 8.0 6.0 4.8
Friedman 2 (×103) 35.6 34.0 21.1 21.2 19.4
Friedman 3 (×10−3) 52.6 48.1 27.7 23.6 19.4
Airquality 467.9 385.5 412.1 310.5 293.5
BostonHousing 23.6 16.5 17.6 10.7 11.2
Ozone 20.10 20.3 19.9 18.8 16.4

Table 3: Estimated mean squared error for some regression problems.
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Figure 2: Mean squared error of 100 simulation runs for the artificial regression
problems.
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7 Summary

The bagging procedure can be used to combine arbitrary predictors in the re-
cursive partitioning framework for classification, regression and survival problems.
The interface design is rather general, however, each user-supplied model needs to
implement a formula based interface.

Benchmark experiments for classification problems show that a bundle of differ-
ent classifiers performs at least comparably to each of the competitors or even leads
to an improvement with respect to misclassification error. Although the results
for combined regression models are preliminary, they indicate the gain of model
combination via resample and combine methods for regression problems.

I would like to thank Kurt Hornik for discussions and suggestions with respect
to the design of the user interface to bagging, a referee for recommendations on
how to improve upon the draft version and Janice Hegewald for carefully reading
the manuscript.
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