
DSC 2001 Proceedings of the 2nd International
Workshop on Distributed Statistical Computing

March 15-17, Vienna, Austria
http://www.ci.tuwien.ac.at/Conferences/DSC-2001
K. Hornik & F. Leisch (eds.) ISSN 1609-395X

JDiehard: An implementation of Diehard in Java

BalasubramanianNarasimhan
Department of Statistics

Stanford University
Stanford, CA 94305-4065

Abstract

We describe JDiehard, an implementation of the stringent battery of tests for ran-
dom number generators created by George Marsaglia. The original implementation
of Diehard (in Fortran and/or C) is command-line driven and not very user-friendly.
JDiehard uses features of a modern language like Java to present a Graphical User
Interface (GUI) to Diehard. Facilities are provided for easy addition of new defined
generators and tests provided they implement some simple interfaces.

The current implementation of Diehard is meant for use on a single system. How-
ever, the extensive use Java interfaces means that the design is flexible enough to dis-
tribute computation using Java RMI or CORBA. Newer versions of JDiehard will make
such features easily available.

1 Introduction

George Marsaglia’s Diehard battery of tests are widely used to certify random number
generators as being worthy of use in serious research. They became well-known after
Marsaglia’s keynote address [3]. Until then, several generators that had been used passed
othersimple tests, but failed the Diehard tests. The original implementation of Diehard
was in Fortran and/or C. Since 1990, they have also been distributed on the internet and on
a CDROM.

JDiehard is an implementation of Diehard in a modern language like Java. The goals
of this implementation are the following:

User friendliness We use Java and Swing to provide a point and click interface to the
generatorsand tests.

New URL: http://www.R-project.org/conferences/DSC-2001/

http://www.R-project.org/conferences/DSC-2001/

Proceedings of DSC 2001 2

Ease of customizationBy using property files and demand loading of classes, we provide
easy ways for the user to add his or her own generators and tests.

Online Generator Testing There are several companies today that provide physical de-
vices that produce random bits. One can easily envision a world where such bits are
made available online via a URL for driving online games etc. Since a language like
Java is network-aware, we get this ability for free!

Multiple precision and Cryptographic Generators The Java arbitrary precision library
allows for easy implementations of the new generators used for example in Advanced
Encryption Standard (AES) of NIST.

Distributable Distributed Computing is the technology of the future. Since JDiehard
makes extensive use of interfaces, there is potential to distribute tests and genera-
tors across the network. A generator and a test are merely interfaces and the actual
location of the object implementing the interface is irrelevant as long as it is avail-
able.

2 A Quick Tour

The requirements for running JDiehard are the following:

• Java 2 platform.

• Element Construction Kit (ECS) fromjava.apache.org .

Figure1 shows the Diehard GUI. The tab namedRNG provides the user access to the
available random number generators. The generators are organized in factories so as to
lessen the possibility of name clashes. Users can seed and sample integers and doubles.
One can also time generation of integers and doubles. Generators that are to be tested can
be chosen via theSelectbutton.

The tab namedTests lists the available generators organized in factories. Tests pa-
rameters can be changed from the default settings. Tests to be run on generators can be
selected via theSelectbutton.

Once the user has chosen tests and generators, the tab namedLaunch Padallows users
to run all possible combinations or specific ones. All results are formatted in HTML and
shown in the output window.

3 What is a Random Number Generator?

Any class that implements the following methods is a Random Number Generator to JDiehard.

public String getName();
public void doSetUp();
public boolean returnsZero();
public boolean returnsOne();
public double nextDouble();
public int nextInt();

Proceedings of DSC 2001 3

Figure 1: JDiehard GUI

Proceedings of DSC 2001 4

ThegetName method should merely return an identifier string. ThedoSetup method is
meant for initialization. The next tworeturnsZero andreturnsOne are needed by
some tests to detect when they apply mathematical functions likelog etc. The methods
nextInt andnextDouble return the next integer and the next double in the sequence.
It should be noted that java usessigned integers. The methodssaveState and re-
storeState work in tandem to store and restore the state of the generator.

In extending the definition of a generator to online ones, it is clear that a distinction
must be made betweenseekablegenerators, those that can restart from any point in their
sequence andnon-seekable, those that cannot. Seekable Generators implement two addi-
tional methods below.

public RandomNumberGeneratorState getState();
public void setState(RandomNumberGeneratorState state);

Most conventional random number generators are, of course, seekable.

4 What is a Test?

Any class that extends implements the following methods is a test to JDiehard.

public String getName();
public void doSetUp();
public String getOutput();
public void setRNG(RandomNumberGenerator rng);
public void run();

The methods of importance here aregetOutput andrun . The latter is where the test is
actually run and is a result of the test extending theRunnable class. Note that since the
test is actually run in a thread, thegetOutput method must be thread-safe in accessing
the output of the test. The output is expected in HTML format, although easy extensions
to XML are possible. Indeed, JDiehard uses theElement Construction Kit(ECS) from the
Apache group for generating dynamic output. This kit handles both HTML and XML.

5 Available Generators

We currently have many of the generators proposed by George Marsaglia implemented.
We also hope to implement the following families of generators.

• Congruential:xn = axn−1 + c mod m.

• Lagged Fibonacci:xn = xn−r ⊕ xn−k

• Subtract-with-borrow and Add-with-carry:xn = xn−r ± xn−k ± c mod m.

• Multiply-with-carry: xn = xn−r ∗ xn−s + c mod m.

Proceedings of DSC 2001 5

6 Available Tests

We have implemented all the tests in the original version of Diehard. They are briefly
described below. A couple of newly developed tests by Marsaglia are also available.

6.1 Birthday Spacings

The Birthday Spacings Test is described in [3].
Choosem “birthdays” in a “year” ofn days. List the spacings between the birthdays.

Let J be the number of values that occur more than once in that list. Then,J is asymptoti-
cally Poisson distributed with meanm3/(4n).

Experience showsn must be quite large, sayn ≥ 218, for comparing the results to the
Poisson distribution with that mean. The default set up usesn = 224 andm = 210 so that
the underlying distribution forJ is taken to be Poisson withλ = 230/226 = 16. A sample
of 200 J ’s is taken, and a chi-square goodness-of-fit test provides ap-value.

In our implementation of the test, we do the following. Assume the default settings
of the parameters above. The first test uses bits1–24 (counting from the left) from the
currently chosen random number generator. Then the bits2-25 of thesame sequenceare
used to provide birthdays, and so on to bits9–32. After we exhaust the32 bits, we begin
with bits 1–24 again using anew sequence. Each set of bits provides ap-value and at least
20 suchp-values are used in a Kolmogorov-Smirnov test.

6.2 Ranks of Binary Matrices

From each of six random32-bit integers from the generator under test, a specified byte is
chosen, and the resulting six bytes form a6 × 8 binary matrix whose rank is determined.
That rank can be from0 to 6, but ranks0, 1, 2, 3 are rare; their counts are pooled with
those for rank4. Ranks are found for100, 000 random matrices, and a chi-square test is
performed on counts for ranks6,5 and0, . . . , 4 pooled together.

6.3 Bitstream Test

Consider the output from an generator as a stream of bits,b1, b2, b3, Consider an alpha-
bet of2 “letters” 0 and1 and think of the stream as a succession of20-letter overlapping
words. Thus the first word isb1b2 . . . b20 and the secondb2b3 . . . b21 and so on. The
bitstream test counts the number of missing20-letter (20-bit) words in a string of221 over-
lapping20-letter words. There are220 possible20-letter words. For a truly random string
of 221 + 19 bits, the number of missing words J should be (very close to) normally , dis-
tributed with meanµ = 141909 and standard-deviationσ = 428. Thus(J − 141909)/428
should be a standard normal variate, that leads to a uniform[0, 1] p-Value. We repeat the
test a number of times and perform a Kolmogorov-Smirnov test on thep-Values.

Actually, in this test, we allow the number of words sampled,n to be one of220 or 221

or 222.

Proceedings of DSC 2001 6

6.4 Craps

The test playsn ≥ 200000 games of craps and counts the number of wins and the number
of throws necessary to end each game. The number of wins should be very close to normal
with meannp and variancenp(1− p) wherep = 244/495. Throws necessary to complete
the game can vary from1 to∞, but all throws>= 21 are lumped together. Aχ-squared
test is made on the number-of-throws cell counts.

6.5 Minimum Distance

Choosen = 8000 random points in a square of side10000. Findd, the minimum distance
between the(n2 − n)/2 pairs of points. If the points are truly independent uniforms,
thend2, the square of the minimum distance should be very close to being exponentially
distributed with mean.995. Thus1 − exp(−d2/.995) should be uniform on[0, 1) and a
Kolmogorov-Smirnov test on the resulting uniform values serves as a test of uniformity for
random points in the square.

6.6 Monkey

The monkey tests are described in [2] and originally discussed in [3]. It includes tests desig-
nated as OPSO (Overlapping-Pairs Sparse Occupancy), OQSO (Overlapping-Quadruples
Sparse Occupancy) and the DNA tests. The Bit Stream test is also a special case of the
monkey test.

Consider the output from a generator as a sequence of overlapping2-letter words from
an alphabet of1024 letters. Each letter is determined by a specified ten bits from the
generator. We generate221 (overlapping)2-letter words (from221 + 1 “keystrokes”) and
countJ , the number of missing words—that is, the number of2-letter words which do
not appear in the entire sequence. That count should be very close to normally distributed
with meanµ = 141909 andσ = 290. The standard deviation and mean are exact. Thus
(J − 141909)/290 should be a standard normal variable.

Our implementation of the OPSO test starts from the10 leftmost bits of the generator
and computes thep-Value for the normal statistic. Then, it restarts the same sequence
and uses the next group of10 bits by moving over one bit to the right, and repeats the
computation. It repeats this a number of times and thep-Values are used for a Kolmogorov-
Smirnov test.

The OQSO test is similar, except that it considers4-letter words from an alphabet of
32 letters, each letter determined by a designated string of5 consecutive bits from the
generator. The mean number of missing words in a sequence of221 four-letter words,
(221 + 3 “keystrokes”), is again141909, with σ = 295. The mean is based on theory;σ
comes from extensive simulation.

The DNA test considers an alphabet of4 letters:C,G,A, T , determined by two desig-
nated bits in the sequence generated by the generator. It uses10-letter words, so that as in
OPSO and OQSO, there are220 possible words, and the mean number of missing words
from a string of221 over-lapping10-letter words (221 + 9 “keystrokes”) is141909. The
standard deviationσ = 339 was determined as for OQSO by simulation.

Proceedings of DSC 2001 7

6.7 Overlapping Permutations

These tests are overlappingm-tuple tests for which elements of the overlappingm-tuples
are not independent, or even successive states of a Markov chain. Letu1, u2, u3, . . .
be uniform variates produced by a RNG. Each of the overlapping3-tuples(u1, u2, u3),
(u2, u3, u4), (u3, u4, u5),. . . , is in one of six possible states:

S1: x < y < z; S2: x < z < y; S3: y < x < z;
S4: y < z < x; S5: z < x < y; S6: z < y < x.

Thus overlapping triples ofu’s lead to a sequence of states such as

3, 3, 2, 5, 1, 4, 3, ..., 3, 2, 5,

If wijk represents the number of times that the successive statesi, j, k appear in the state
sequence, then ∑

(wijk − µijk)c−ijk,rst(wrst − µrst)

will have, asymptotically, aχ2 distribution. The means, covariance matrixC, and any weak
inverseC− must be found.

6.8 Overlapping Sums

Letm ≥ 100 be a fixed integer. Take a sequence of iidU(0, 1) random variablesU1, U2, . . . ,
and form the overlapping sumsS1 = U1+U2+· · ·+Um,S2 = U2+U3+· · ·+Um+1, and so
on. TheSi’s, i = 1, 2, . . . ,m are virtually normal with a covariance matrix. The covariance
matrix is easy to calculate. ClearlyE(Si) = m/2, andV (Si) = m/12, i = 1, 2, . . . ,m.
Furthermore, if1 ≤ i < j ≤ m, thenSi andSj have a sumS of m− j + i uniform values
in common withX = Si−S, S, andY = Sk−S being mutually independent. Therefore,
Cov(Si, Sj) = m−j+i

12 .
Thus, ifC denotes them-by-m covariance matrix of theSi’s, the matrix12C is Toeplitz

with diagonalsm, m − 1,. . . ,1. A cholesky factorization yieldsC = V V T , whereV is
lower triangular. SinceV −1, the inverse of a lower triangular matrix is easily computed,
we can convert the vectors of Si’s to independent normals via the linear transformation
x = V −1s which can be tested for normality or uniformity after converting to uniforms via
the normal cdf.

6.9 Park

Let each point inm-space be the center of a cubic or spherical “car”, of specified size, and
suppose we park “by ear” (as many people do). Ifc1, c2, c3, . . . are non-overlapping cars,
already parked, we try to park randomly until we succeed with a car that does not hit any of
those already parked, then add the new car to the list. Out ofn tries, we will have a list of
k(n) cars successfully parked. The distribution ofk(n) is not known, but simulation with
a good RNG gives the mean and variance accurately enough for comparison with other
generators.

Proceedings of DSC 2001 8

6.10 Runs

The runs test is a classic test described in many books. See for example [1].
We implement the runs test by computing the statistics for runs-up and runs-down in

sequences of lengthn. This is repeated a number of times and a Kolmogorov-Smirnov test
is done on thep-values.

6.11 Spheres

The three-dimensional spheres test goes as follows.
Choose4000 random points in a cube of edge1000. At each point, center a sphere

large enough to reach the next closest point. Then the volume of the smallest such sphere
is very close to being exponentially distributed with mean120π/3. Thus, the radius cubed
is exponential with mean30. The mean is obtained by extensive simulation. The test
generates4000 such spheres a number of times. Each minimum radiusr, cubed leads to a
uniform variable by means of the transformation1 − exp(−r3/30), then a Kolmogorov-
Smirnov test is done on the uniforms.

6.12 Squeeze

The Squeeze test uses the random uniform values in[0, 1). Starting withk = 232, the test
findsJ , the number of iterations necessary to reducek to 0 using the reductionk = bkUc,
whereU is a random uniform. A sample of100, 000 J ’s is used for aχ2 test of the cell
frequencies.

7 Adding Tests and Generators

We have tried to make it easy to add generators in tests. To add a generator, a user must
implement the methods described in section3. Similarly for a test, the methods in section4
must be implemented. Once these Java classes compile, they need to placed in theCLASS-
PATH. Then a property file—a simple text file—which lists available generators and tests
has to be edited; the new tests and generators must be added to the file.

That’s it. No recompilation of the entire application is needed. JDiehard will pick up
the new generators and tests upon intialization.

It is also possible to add generators written in languages such as C and C++ via the Java
Native Interface. The steps are more involved.

8 Future plans

We hope to exploit the RS-Java interface to make JDiehard available to R and S users.

Proceedings of DSC 2001 9

References

[1] The Art of Computer Programming: Seminumerical Algorithms. Addison-Wesley,
Reading, Mass., 1998.

[2] G. Marsaglia and A. Zaman. Monkey tests for random number generators.Computers
and Mathematics with Applications, Part A, 26(9):1–10, 1993.

[3] George Marsaglia. A current view of random number generators. InComputer Science
and Statistics: Proceedings of the 16th Symposium on the Interface.

	Introduction
	A Quick Tour
	What is a Random Number Generator?
	What is a Test?
	Available Generators
	Available Tests
	Birthday Spacings
	Ranks of Binary Matrices
	Bitstream Test
	Craps
	Minimum Distance
	Monkey
	Overlapping Permutations
	Overlapping Sums
	Park
	Runs
	Spheres
	Squeeze

	Adding Tests and Generators
	Future plans

