
Refactoring R Programs

Tobias Verbeke
Business & Decision

2008-08-12

Plan of the Presentation

Introduction

Current Results

Future Developments

Definition of refactoring

Refactoring is the object-oriented variant of restructuring:
“the process of changing a [object-oriented] software
system in such a way that it does not alter the external
behaviour of the code, yet improves its internal structure.”

Opdyke (1992), cited by Mens and Tourwé (2004)

Simple R example in Eclipse

Renaming a variable

Some distinctions

I primitive refactorings vs. composite refactorings

I floss refactoring vs. root canal refactoring (Black)
I manual refactoring

I time consuming
I error prone

vs. tool-based refactoring (in a so-called refactoring browser)
I immediate
I error-free
I reduction of testing time

Why should you be interested?

I refactoring is part of test-driven development and eXtreme
programming methodologies (test – code – refactor cycle)

I refactoring as part of software reengineering (fate of a
consultant. . .)

I with appropriate tool support it can make your programming
life even more pleasant.

Refactoring Activities (Mens and Tourwé, 2004)

1. Identify where the software should be refactored.

2. Determine which refactoring(s) should be applied to the
identified places.

3. Guarantee that the applied refactoring preserve behaviour.

4. Apply the refactoring.

5. Assess the effect of the refactoring on quality characteristics
of the software (e.g., complexity, understandability,
maintainability) or the process (e.g., productivity, cost, effort).

6. Maintain the consistency between the refactored program
code and other software artifacts (such as documentation,
design documents, requirements specifications, tests, etc.).

Meta-model of R

Graph representation of all R-related objects which may be subject
to refactoring operations.

Simple tool to keep view of the pre- and post-conditions of a
certain refactoring.

Refactoring catalogue

I similar in spirit to the Java and Haskell refactoring catalogues

I adapted to the pecularities of the R language
I template structure for documenting each refactoring

I name
I summary
I R code examples
I motivation
I pre-conditions
I mechanics

I see http://www.r-developer.org/wiki/refactoring/
RefactoringCatalogue

http://www.refactoring.com/catalog/index.html
http://www.cs.kent.ac.uk/projects/refactor-fp/catalogue/
http://www.r-developer.org/wiki/refactoring/RefactoringCatalogue
http://www.r-developer.org/wiki/refactoring/RefactoringCatalogue

Detailed example

I name : MergeArguments

I summary : merge two or more arguments of a function into a
list object

I motivation : prevent huge argument sequences ; strategy
comparable to the gp list of graphical parameters in calls to
grid functions, control list in some fitting algorithms (e.g.
nls)

I preconditions : beware of the dots argument
I mechanics :

I select the arguments and identify the locations where these are
used in statements

I replace the given arguments by argList list
I replace arg1 by argList$arg1 etc.

Upcoming

I complete the Refactoring Catalogue

I Roxygen support (positive side-effect)

I Eclipse Refactoring browser

I work on test artifacts

I software metrics (assess refactoring quality improvements)

Contact Details & Acknowledgements

I http://www.r-developer.org

I tobias.verbeke@gmail.com

I Sincere thanks to :

I Stephan Wahlbrink (http://www.walware.de/goto/statet)
I Tom Mens (Université Mons-Hainaut)
I Johnson & Johnson PRDBE

http://www.r-developer.org
mailto:tobias.verbeke@gmail.com
http://www.walware.de/goto/statet

	Outline
	Introduction
	Current Results
	Future Developments

