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Introduction
Random forests

» have become increasingly popular in, e.g., genetics and

the neurosciences [imagine a long list of references here]
» can deal with “small n large p"-problems, high-order
interactions, correlated predictor variables
» are used not only for prediction, but also to assess

variable importance
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Construction of a random forest

Construction

» draw ntree bootstrap samples from original sample

» fit a classification tree to each bootstrap sample
= ntree trees
> creates diverse set of trees because

> trees are instable w.r.t. changes in learning data
= ntree different looking trees (bagging)
» randomly preselect mtry splitting variables in each split

= ntree more different looking trees (random forest)



Random forests in R

» randomForest (pkg: randomForest)

» reference implementation based on CART trees
(Breiman, 2001; Liaw and Wiener, 2008)

— for variables of different types: biased in favor of
continuous variables and variables with many categories
(Strobl, Boulesteix, Zeileis, and Hothorn, 2007)

» cforest (pkg: party)

> based on unbiased conditional inference trees
(Hothorn, Hornik, and Zeileis, 2006)

+ for variables of different types: unbiased when

subsampling, instead of bootstrap sampling, is used
(Strobl, Boulesteix, Zeileis, and Hothorn, 2007)

R functions



(Small) random forest

Constructior
R functions

i
=
o}
=
T
>

importance

Tests for variable

mportance

mportance
Conditional




Measuring variable importance

Constructior

R functions
Variable

importance

mean Gini gain produced by X; over all trees Tests for variable

mportance

» Gini importance

Conditional

» obj <- randomForest(..., importance=TRUE) mportance
obj$importance  column: MeanDecreaseGini

importance(obj, type=2)

for variables of different types: biased in favor of continuous

variables and variables with many categories



Measuring variable importance

> permutation importance Construction

R functions

mean decrease in classification accuracy after Vori
riable
importance

permuting X; over all trees

Tests for variable

mportance

» obj <- randomForest(..., importance=TRUE) oot
obj$importance  column: MeanDecreaseAccuracy A
importance(obj, type=1)

» obj <- cforest(...)

varimp (obj)

for variables of different types: unbiased only when

subsampling is used as in cforest(..., controls =

cforest_unbiased())



The permutation importance

within each tree t

Variable
o A(t) (t) Importance
VIO (x;) = 2iex ! (y, — ) _ 2o ! (y, Ji ’TJ)
CU
f/’.(t) = f(t)(x;) = predicted class before permuting

y(t) = f(t)(x, m ) = predicted class after permuting X;

I7TJ
Xim = (Xi,17 cee Xij—=1s Xri(i) o Xij+1s - - aXi,p>

Note: VI()(x;) = 0 by definition, if X; is not in tree t



The permutation importance

Construction

R functions
over all trees:

Variable

importance
1. raw importance Tests for variabe

e vit(x))

VI(XJ) - ntree

» obj <- randomForest(..., importance=TRUE)

importance(obj, type=1, scale=FALSE)



The permutation importance

Construction

R functions

over all trees:
Variable

importance

2. scaled importance (z-score)

» obj <- randomForest(..., importance=TRUE)

importance(obj, type=1, scale=TRUE) (default)
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Tests for variable importance

for variable selection purposes

» Breiman and Cutler (2008): simple significance test
based on normality of z-score

Tests for variable

randomForest, scale=TRUE + a-quantile of N(0,1) mpertance

» Diaz-Uriarte and Alvarez de Andrés (2006): backward
elimination (throw out least important variables until
out-of-bag prediction accuracy drops)

varSelRF (pkg: varSelRF), dep. on randomForest
» Diaz-Uriarte (2007) and Rodenburg et al. (2008): plots

and significance test (randomly permute response values
to mimic the overall null hypothesis that none of the

predictor variables is relevant = baseline)
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Tests for variable importance

problems of these approaches:

> (at least) Breiman and Cutler (2008): strange statistical
properties (Strobl and Zeileis, 2008)

» all: preference of correlated predictor variables (see also
Nicodemus and Shugart, 2007; Archer and Kimes, 2008)

Tests for variable
importance



Breiman and Cutler’s test

under the null hypothesis of zero importance:

Tests for variable
importance

z = N(0,1)

if z; exceeds the a-quantile of N(0,1) = reject the

null hypothesis of zero importance for variable X;



Raw importance
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z-score and power

sample size
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importance



Findings

Constructior

R functions

z-score and power

Tests for variable

» increase in ntree o
Conditional

» decrease in sample size  —

= rather use raw, unscaled permutation importance!
importance(obj, type=1, scale=FALSE)

varimp (obj)



What null hypothesis were we testing

in the first place?

obs | Y X Z

1y Xy =2

Tests for variable
importance

P Y Xai(i)y 4

N\ Yn | Xmi(n)y Zn
Ho: X; LY, Zor X; LYANX; LZ

P(Y,X;,Z) 2 P(Y,Z) P(X;)
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both Y and the remaining predictor variables Z



What null hypothesis were we testing

in the first place?

Tests for variable
importance

the current null hypothesis reflects independence of X; from

both Y and the remaining predictor variables Z
= a high variable importance can result from violation of

either one!



Suggestion: Conditional permutation scheme

obs

X; z
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Technically

» use any partition of the feature space for conditioning

» here: use binary partition already learned by tree

(use cutpoints as bisectors of feature space)

» condition on correlated variables or select some

Strobl et al. (2008)
available in cforest from version 0.9-994: varimp (obj,

conditional = TRUE)

Conditional
importance



Simulation study
> dgp: yi=0B1-xi1+- -+ B2 xi2+e€i € i N(0,0.5)
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Results
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Peptide-binding data
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if your predictor variables are of different types:
use cforest (pkg: party) with default option controls = Constructior
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with permutation importance varimp (obj)
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or randomForest (pkg: randomForest)

with permutation importance importance(obj, type=1)

or Gini importance importance(obj, type=2)
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Summary

if your predictor variables are of different types:
use cforest (pkg: party) with default option controls =
cforest_unbiased()

with permutation importance varimp (obj)

otherwise: feel free to use cforest (pkg: party)

with permutation importance varimp (obj)

or randomForest (pkg: randomForest)

with permutation importance importance(obj, type=1)
or Gini importance importance(obj, type=2)

but don't fall for the z-score! (i.e. set scale=FALSE)

if your predictor variables are highly correlated: use the

conditional importance in cforest (pkg: party)

Summary



Summary
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