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The CXXR Project

The aim of the CXXR project1 is progressively to reengineer the
fundamental parts of the R interpreter from C into C++, with the
intention that:

Full functionality of the standard R distribution is preserved;
The behaviour of R code is unaffected (unless it probes into the
interpreter internals);
The .C and .Fortran interfaces, and the R.h and S.h APIs, are
unaffected;
Code compiled against Rinternals.h may need minor
alterations.

Work started in May 2007, shadowing R-2.5.1; the current release
(tested on Linux and Mac OS X) shadows R-2.7.1.

1www.cs.kent.ac.uk/projects/cxxr

http://www.cs.kent.ac.uk/projects/cxxr
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Why Do This?

My medium-term objective is to introduce provenance-tracking facilities
into CXXR: so that for any R data object, it is possible to determine
exactly which original data files it was produced from, and exactly
which sequence of operations was used to produce it. (Similar to the
old S AUDIT facility, but usable directly within R.)

Also:

By improving the internal documentation, and
Tightening up the internal encapsulation boundaries within the
interpreter,

we hope that CXXR will make it easier for other researchers to produce
experimental versions of the interpreter, and to enhance its facilities.
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Progress So Far

Memory allocation and garbage collection have been decoupled
from each other and from R-specific functionality, and
encapsulated within C++ classes.
The SEXPREC union has been replaced by an extensible C++
class hierarchy.



Data Layout in CR

In CR (i.e. standard R), R data objects (nodes) are laid out in memory
in one of these patterns:

Vectors:
SEXPTYPE and other info

Pointer to attributes

Pointer to next node (used by GC)

Length

Vector data

Pointer to prev. node (used by GC)

‘True length’

Other nodes:
SEXPTYPE and other info

Pointer to attributes

Pointer to next node (used by GC)

Pointer to prev. node (used by GC)

Pointer

Pointer

Pointer

All the above objects are handled via a single C type SEXPREC; the
SEXPTYPE field identifies the particular kind of object it is, e.g. pairlist
(LISTSXP), expression (LANGSXP), or vector of integers (INTSXP).
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Data allocation and garbage collection work
directly in terms of these node patterns.
Consequently, introducing an object type that
doesn’t conform to the pattern is a big deal.
There is a tendency to shoehorn objects into the
‘three pointers’ pattern, and to use data fields for
purposes different from what was originally
intended.
Checking that a node is of a type appropriate to
its context is always done at run-time, never at
compile-time.
The CR code is filled with switches and tests on
the SEXPTYPE.
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Vector Classes in CXXR

VectorBase

RObject

GCNode

EdgeVector<T>
String

(CHARSXP)

(EXPRSXP)
ExpressionVector StringVector

(STRSXP)
UncachedString CachedString

ListVector
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DumbVector<T>
(LGLSXP, INTSXP,

REALSXP, CPLXSXP,
RAWSXP)

This class inheritance hierarchy is readily extensible.
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Class GCNode
encapsulates the
garbage−collection
logic (along with
class GCManager).

Class RObject is the home
of attributes.

C++ code sees:
typedef RObject* SEXP;

This class inheritance hierarchy is readily extensible.



Other Node Classes in CXXR

RObject

GCNode

Environment
(ENVSXP)

ConsCell
ExternalPointer
(EXTPTRSXP)

Promise
(PROMSXP)

DottedArgs
(DOTSXP)

ByteCode
(BCODESXP)

Expression
(LANGSXP)

Symbol
(SYMSXP)

PairList
(LISTSXP)

FunctionBase

Closure
(CLOSXP)

WeakRef
(WEAKREFSXP)

BuiltInFunction
(BUILTINSXP,
SPECIALSXP)

This is a fairly simple-minded first cut, and is subject to change.



Some Features of CXXR Internal Code

    GCRoot<PairList> tail(location−>tail());
    PairList* node = new PairList(car, tail, tag);
    location−>setTail(node);
}

void insertAfter(ConsCell* location, RObject* car,
                 RObject* tag = 0)
{

(This is only an illustrative example, not part of the CXXR code base.)
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The default is for the newly
inserted node to have no tag:
in CXXR, R_NilValue is
simply a null pointer.
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Some Features of CXXR Internal Code

    GCRoot<PairList> tail(location−>tail());
    PairList* node = new PairList(car, tail, tag);
    location−>setTail(node);
}

void insertAfter(ConsCell* location, RObject* car,
                 RObject* tag = 0)
{

GCRoot is a (templated) ’smart
pointer’ type.  It can be used like
a pointer (PairList* in this case),
but protects whatever it points to
from the garbage collector.

(This is only an illustrative example, not part of the CXXR code base.)



Some Features of CXXR Internal Code

    GCRoot<PairList> tail(location−>tail());
    PairList* node = new PairList(car, tail, tag);
    location−>setTail(node);
}

void insertAfter(ConsCell* location, RObject* car,
                 RObject* tag = 0)
{

The invocation of ’new’ may
result in a garbage collection.

(This is only an illustrative example, not part of the CXXR code base.)



Some Features of CXXR Internal Code

    GCRoot<PairList> tail(location−>tail());
    PairList* node = new PairList(car, tail, tag);
    location−>setTail(node);
}

void insertAfter(ConsCell* location, RObject* car,
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{
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here, so the GC−protection it
offers to tail ends automatically:
no need to balance PROTECT()/
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Some Features of CXXR Internal Code

    location−>setTail(new PairList(car,
                                   location−>tail(),
                                   tag));
}

void insertAfter(ConsCell* location, RObject* car,
                 RObject* tag = 0)
{

(This is only an illustrative example, not part of the CXXR code base.)



Benchmarks

The following tests were carried out on a 2.8 GHz Pentium 4 with 1 MB
L2 cache, comparing R-2.7.1 with CXXR 0.14-2.7.1, in each case
using gcc -O2 and no USE_TYPE_CHECKING.

Benchmark CR CXXR Ratio
(secs) (secs)

bench.R 108.0± 0.3 108.0± 0.2 ≈ 1
(Jan de Leeuw)
mass-Ex.R 29.68± 0.03 42.38± 0.06 1.43
(Simon Urbanek)
stats-Ex.R 23.04± 0.01 34.50± 0.01 1.50

The reasons for the time penalty in CXXR are not yet fully understood:
the target is to get it down to 30% or better.



Tentative Roadmap

1 Further adjustments to the class hierarchy.
2 Reimplement duplicate() using C++ copy constructors and an
RObject::clone() virtual function.

3 Reimplement eval() as a C++ virtual function.
4 New serialisation format, probably XML-based. This is to make it

easier to introduce new node classes, and to support
provenance-tracking information.

5 Reengineer the Environment class, which will lie at the centre of
provenance tracking.


