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Introduction

Cox PH model:

λi (t) = λ(t, xi ) = λ0(t) exp(x′iβ)

with

λi (t) hazard rate of observation i [i = 1, . . . , n]

λ0(t) baseline hazard rate

xi vector of covariates for observation i [i = 1, . . . , n]

β vector of regression coefficients

Problem: restrictive model, not allowing for

non-proportional hazards (e.g., time-varying effects)

non-linear effects
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Additive Hazard Regression

Generalisation: Additive Hazard Regression
(Kneib & Fahrmeir, 2007)

λi (t) = exp(ηi (t))

with

ηi (t) =
J∑

j=1

fj(xi(t)),

generic representation of covariate effects fj(xi )

a) linear effects: fj(xi (t)) = flinear(x̃i ) = x̃iβ
b) smooth effects: fj(xi (t)) = fsmooth(x̃i )
c) time-varying effects: fj(xi (t)) = fsmooth(t) · x̃i

where x̃i ∈ xi (t).

Note:

c) includes log-baseline for x̃i ≡ 1
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P-Splines

flexible terms can be represented using P-splines
(Eilers & Marx, 1996)

model term (x can be either x̃i or t):

fj(x) =
M∑

m=1

βjmBjm(x) (j = 1, . . . , J)

penalty:

penj(βj) =

{
κj βj

′Kβj cases b),c)
0 case a)

with

K = D′D (i.e., cross product of difference matrix D)

D
e.g .
=

(
1 −2 1 . . .
0 1 −2 1 . . .

)
κj smoothing parameter
(larger κj ⇒more penalization ⇒ smoother fit)
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Inference

Penalized Likelihood Criterion: (NB: this is the full log-likelihood)

Lpen(β) =
n∑

i=1

[
δiηi (ti )−

∫ ti

0
exp(ηi (t)) dt

]
−

J∑
j=0

penj(βj)

Ti true survival time

Ci censoring time

ti = min(Ti ,Ci ) observed survival time (right censoring)

δi = 1(Ti ≤ Ci ) indicator for non-censoring

Problem:

Estimation and in particular model choice
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CoxflexBoost

Aim:

Maximization of a (potentially) high-dimensional log-likelihood
with different modeling alternatives

Thus, we use:

Iterative algorithm

Likelihood-based boosting algorithm

Component-wise base-learners

Therefore:

Use one base-learner gj(·) for each covariate
(or each model component) [ j ∈ {1, . . . , J} ]

Component-Wise Boosting

as a means of estimation and variable selection combined with
model choice.
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CoxflexBoost Algorithm

(i) Initialization: Iteration index m := 0.

Function estimates (for all j ∈ {1, . . . , J}):

f̂
[0]
j (·) ≡ 0

Offset (MLE for constant log hazard):

η̂[0](·) ≡ log

(∑n
i=1 δi∑n
i=1 ti

)
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(ii) Estimation: m := m + 1.
Fit all (linear/P-spline) base-learners separately

ĝj = gj(· ; β̂j), ∀j ∈ {1, . . . , J},

by penalized MLE, i.e.,

β̂j = arg max
β
L[m]

j,pen(β)

with the penalized log-likelihood ( analogously as above )

L[m]
j,pen(β) =

n∑
i=1

[
δi · (η̂[m−1]

i + gj(xi (ti ); β))

−
∫ ti

0

exp
{
η̂

[m−1]
i (̃t) + gj(xi (̃t); β)

}
d t̃

]
− penj(β),

with the additive predictor ηi split

into the estimate from previous iteration η̂
[m−1]
i

and the current base-learner gj(·; β)
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(iii) Selection: Choose base-learner ĝj∗ with

j∗ = arg max
j∈{1,...,J}

L[m]
j ,unpen(β̂j)

(iv) Update:
Function estimates (for all j ∈ {1, . . . , J}):

f̂
[m]
j =

{
f̂

[m−1]
j + ν · ĝj j = j∗

f̂
[m−1]
j j 6= j∗

Additive predictor (= fit):

η̂[m] = η̂[m−1] + ν · ĝj∗

with step-length ν ∈ (0, 1] (here: ν = 0.1)

(v) Stopping rule: Continue iterating steps (ii) to (iv) until
m = mstop
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Some Aspects of CoxflexBoost

Estimation full penalized MLE · ν (step-length)

Selection based on unpenalized log-likelihood L[m]
j ,unpen

Base-Learners specified by (initial) degrees of freedom, i.e., df j = d̃f j

Likelihood-based boosting (in general):
See, e.g., Tutz and Binder (2006)
Above aspects in CoxflexBoost:
See, e.g., model based boosting (Bühlmann & Hothorn, 2007)
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Degrees of Freedom

Specifying df more intuitive than
specifying smoothing parameter κ

Comparable to other modeling components, e.g., linear effects

Problem: Not constant over the (boosting) iterations

But simulation studies showed: No big deviation from the

initial df j = d̃f j
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Model Choice

Recall from generic representation:

fj(x̃i ) can be a

a) linear effect: fj(xi (t)) = flinear(x̃i ) = x̃iβ

b) smooth effect: fj(xi (t)) = fsmooth(x̃i )

c) time-varying effect: fj(xi (t)) = fsmooth(t) · x̃i

⇒We see: x̃i can enter the model in 3 different ways

But how?

Add all possibilities as base-learners to the model.
Boosting can chose between the possibilities

But the df must be comparable!
Otherwise: more flexible base-learners are preferred
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For higher order differences (d ≥ 2): df > 1 (κ→∞)

Polynomial of order d − 1 remains unpenalized

Solution:

Decomposition (based on Kneib, Hothorn, & Tutz, 2008)

g(x) = β0 + β1x + . . .+ βd−1x
d−1︸ ︷︷ ︸

unpenalized, parametric part

+ gcentered(x)︸ ︷︷ ︸
deviation from polynomial

Add unpenalized part as separate, parametric base-learners

Assign df = 1 to the centered effect (and add as P-spline
base-learner)
Analogously for time-varying effects

Technical realization (see Fahrmeir, Kneib, & Lang, 2004):

decomposing the vector of regression coefficients β into (β̃unpen, β̃pen) utilizing
a spectral decomposition of the penalty matrix
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Early Stopping

1 Run the algorithm mstop-times (previously defined).
2 Determine new m̂stop,opt ≤ mstop:

... based on out-of-bag sample (with simulations easy to use)

... based on information criterion, e.g., AIC

⇒Prevents algorithm to stop in a local maximum
(of the log-likelihood)

⇒Early stopping prevents overfitting
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Variable Selection and Model Choice

... is achieved by

selection of base-learner (in step (iii) of CoxflexBoost), i.e.,
component-wise boosting
and

early stopping

Simulation-Results (in Short)

Good variable selection strategy

Good model choice strategy if only linear and smooth effects
are used

Selection bias in favor of time-varying base-learners (if
present) ⇒ standardizing time could be a solution

Estimates are better if model choice is performed
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Computational Aspects

CoxflexBoost is implemented using R

Crucial computation: Integral in L[m]
j ,pen(β):∫ ti

0
exp

{
η̂

[m−1]
i (̃t) + gj(xi (̃t); β)

}
d t̃

time consuming

very often evaluated (maximization of L[m]
j,pen(β))

R-function integrate() slow in this context
⇒ (specialized) vectorized trapezoid integration implemented
⇒≈ 100 times quicker

Efficient storage of matrices can reduce computational burden
⇒ recycling of results
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Summary & Outlook

CoxflexBoost . . .

. . . allows for variable selection and model choice.

. . . allows for flexible modeling

flexible, non-linear effects
time-varying effects (i.e., non-proportional hazards)

. . . provides functions to manipulate and show results
(summary(), plot(), subset(), . . . )

To be continued . . .

Formula for AIC (for Boosting in Survival Models)

Include mandatory covariates (update in each step)

Measure for variable importance: e.g.,
∫
|f̂ [mstop ]

j (·)|
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