
RiDMC: an R package for the numerical

analysis of dynamical systems

Antonio, Fabio Di Narzo1 Marji Lines2

1Università degli studi di Bologna
2Università degli studi di Udine

UseR! 2008, Dortmund 12-08-2008

Dynamical Systems

I Dynamical systems theory is an interdisciplinary field, with
major contributions coming from mathematics and physics but
also many other fields like population studies and meteorology

I A dynamical system is a mathematical model which formalizes
the ‘rules’ describing the time dependence of a point’s position
in its ambient space

I The point symbolizes a state of the system, and is usually
represented as a d-variate real vector

I Examples of dynamical systems include the description of the
swinging of a clock pendulum, the flow of water in a pipe, the
number of fish each spring in a lake, the daily rainfall in a city,
etc.

RiDMC: the story

I iDMC (the interactive Dynamical Model Calculator) is a
stand-alone Java application -with GUI- from which the C
library idmclib originated as a spin-off
(http://idmc.googlecode.com)

I idmclib is a standard-C library which relies on the LUA library
for model code interpretation and on the Gnu Scientific Library
(GSL) for computational tasks and random number generation.
The idmclib is small, self-sufficient, and documented. License:
GPL-v2 (http://idmclib.googlecode.com)

I RiDMC is a self-contained R package which internally uses the
idmclib C library for core numerical analyses, and exploits R
power for delivering a more complete, interactive and flexible
environment to the final user for the numerical analysis of
dynamical systems

RiDMC workflow

What is the typical workflow with RiDMC?

I write down the model in the LUA language, save it in a plain
text file

I load the model as an R object

I perform analyses by using one or more model methods

I plot resulting objects

Writing models

I Models are specified in the interpreted LUA language

I The language is very easy to learn, and many models are
already given as examples

Hénon map


xt+1 = a − x2

t + byt

yt+1 = xt

name = `Henon`

type = `D`

parameters = {`a`, `b`}

variables = {`x`, `y`}

function f(a, b, x, y)

x1 = a - x^2 + b * y

y1 = x

return x1, y1

end

Analyzing a model

I Package design is object oriented, and all major analysis
functions have been written as (S3) Model methods

I To date, the following methods are available:

function description
Trajectory, TrajectoryList Model trajectories
Basin, BasinMulti Basins of attraction
Bifurcation Bifurcation diagram
LyapunovExponents Lyapunov exponents
cycles Periodic Cycles

I Each method returns an object which can be directly plotted by
the usual plot method

Trajectories

Trajectories

I A first, basic explorative analysis of a dynamical system involves
the visual inspection of model trajectories

I Trajectories can be plotted vs time axis or represented in the
system state space, where time dimension is lost, but other
model features can be appreciated

I With RiDMC one can easily compute and plot trajectories for
both discrete and continuous time dynamical systems

Trajectories (II)

> m <- Model(´henon.lua´)

> tr <- Trajectory(m, par, var, time, transient)

> tr

= iDMC model discrete trajectory =

model: Henon

parameter values: 1.42 0.3

starting point: 0 0

transient length: 10000

time span: 1000

Trajectories (III)

plot(tr)

x

y

−2 −1 0 1

−2
−1

0
1

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Attractors

Attractors

I A key aspect of a dynamical system is its limit behaviour, i.e.
the system’s state as time tends to infinity

I As we have already seen, this can be approximated by using the
Trajectory method and exploiting the transient option

I Even more useful in this respect can be the TrajectoryList

method, which shows multiple trajectories in the same plot, by
allowing for variations in starting points and/or parameter
values

Attractors
> par <- c(a = 1.4, b = 0.3)

> var <- list(c(x = -1, y = -1), c(x = 1, y = 1))

> trL <- TrajectoryList(m, n=20, par, var, time=50)

> plot(trL)

x

y

−1.5 −1 −0.5 0 0.5 1 1.5

−1
.5

−1
−0

.5
0

0.5
1

1.5

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

Basins of attraction

> bs <- Basin(m, par, xlim, ylim, transient,

iterations)

Sensitive Dependence on Initial Conditions

Lyapunov exponents

I One of the more interesting possibilities of nonlinear systems is
sensitive dependence on initial conditions

I The Lyapunov Exponent (LE) measures the average rate of
divergence in time of two nearby trajectories:

|δxt | ' eλt |δx0|

I Positive values of λ indicate SDIC and suggest chaotic
attractors

I Computing the value of λ can be very hard to do analytically,
but numerical approximations can be obtained with RiDMC

Sensitive Dependence on Initial Conditions
> par <- c(a = 1.4, b = 0.3)

> x0 <- c(x = 0, y = 0)

> var <- list(x0, x0 + 0.001)

> trL <- TrajectoryList(m, n = 2, par, var, time = 30)

Time

x

0 5 10 15 20 25 30

−1
.5

−1
.0

−0
.5

0.0
0.5

1.0
1.5

Lyapunov exponents (II)

> ly <- LyapunovExponents(m, par, var, time, par.min,

par.max)

> ly

=iDMC Lyapunov exponents diagram=

Model: Henon

Starting point: x = 0.5, y = 1

Parameter values: a = 1.4, b = 0.3

Varying par.: a

Varying par. range: [0.3, 1.4]

MLE range: [-0.5975, 0.4279]

Lyapunov exponents (III)

0.4 0.6 0.8 1.0 1.2 1.4

−0
.6

−0
.4

−0
.2

0.0
0.2

0.4

a

λλ

Note

RiDMC isn’t just for toy models...

Current status

I The idmclib C API is quite stable. Currently working on
documentation and distribution system

I RiDMC core computing functions are stable too

I The plotting functions (grid-based) may change in the future

I Extract raw data and write your custom plotting functions if
you want forward-compatibility of your code!

Perspectives

I fix bugs

I stabilize plotting functions

I add more analysis routines

The end.

	Dynamical Systems
	Analysing models
	Analysis methods
	Trajectories
	Attractors
	Sensitive Dependence on Initial Conditions (SDIC)

	Note
	Current status and perspectives

