Computationally Tractable Methods for
High-Dimensional Data

Peter Buhlmann

Seminar fir Statistik, ETH Zirich

August 2008

Riboflavin production in Bacillus Subtilis
in collaboration with DSM (former Roche Vitamines)

response variables Y € R: riboflavin production rate
covariates X € RP: expressions from p = 4088 genes
sample size n = 72 from a “homogeneous” population of
genetically engineered mutants of Bacillus Subtilis

p > nand

high quality data

goal: improve riboflavin production rate of Bacillus Subtilis

statistical goal:

quantify importance of genes/variables in terms of association
(i.e. regression)
~» nNew interesting genes

which we should knock-down or enhance

my primary interest:

variable selection / variable importance

my primary interest:

variable selection / variable importance

but many of the concepts work also for the easier problem of
prediction

High-dimensional data

(X1,Y1),...,(Xn, Yn) i.i.d. or stationary
X; p-dimensional predictor variable
Y; response variable, e.g. Y; € Ror Y; € {0,1}

High-dimensional data

(X1,Y1),...,(Xn, Yn) i.i.d. or stationary
X; p-dimensional predictor variable
Y; response variable, e.g. Y; € Ror Y; € {0,1}

high-dimensional: p > n

areas of application:
biology, astronomy, marketing research, text classification,
econometrics, ...

High-dimensional linear and generalized linear models

P .
Yi=(6oH) Y XY +e,i=1,...,n,p>n
j=1
inshort: Y = X + ¢

Y; independent, E[Y;|X; = X] = u(x),

n(x) = g(u(x)) = (Bo+) Zﬂ, x0, p>n

j=1

goal: estimation of
» variable selection: Ague = {j; 5 # 0}
» prediction: e.g. 8T Xnew

We need to regularize

if true Biye IS sparse w.r.t.
> ||firuello = number of non-zero coefficients
~» penalize with the || - [|o-norm:
argmin ;(—2 log-likelihood(3) + A||3]l0), €.9. AIC, BIC
~» computationally infeasible if p is large (2P sub-models)
> ||ﬂtrue||1 = ijzl |5true,j|
~» penalize with the || - ||1-norm, i.e. Lasso:
argmin;(—2 log-likelihood(3) + Al|3|1)
~» convex optimization: computationally feasible for large p

We need to regularize

if true Biye IS sparse w.r.t.
> ||firuello = number of non-zero coefficients
~» penalize with the || - [|o-norm:
argmin ;(—2 log-likelihood(3) + A||3]l0), €.9. AIC, BIC
~» computationally infeasible if p is large (2P sub-models)
> ||ﬁtrue||1 = ijzl |5true,j|
~> penalize with the || - ||1-norm, i.e. Lasso:
argmin;(—2 log-likelihood(3) + Al|3|1)
~» convex optimization: computationally feasible for large p

alternative approaches include:
Bayesian methods for regularization
~» computationally hard (and computation is approximate)

Short review on Lasso

for linear models; analogous results for GLM'’s

Lasso for linear models (Tibshirani, 1996)

B(A) = argming(n~YY = XB|P+ A [I8]1)
\Z’O" ~——

ij:]_ Bj |

~» convex optimization problem

» Lasso does variable selection
some of the 3(\) =0
(because of “/*-geometry”)
» A()) is (typically) a shrunken LS-estimate

Lasso for variable selection:
A = {i: () #0}
no significance testing involved

computationally tractable (convex optimization only)

whereas || - |[o-norm penalty methods (AIC, BIC) are
computationally infeasible (2P sub-models)

Why the Lasso/¢*-hype?

among other things (which will be discussed later)
(1-penalty approach approximates (°-penalty problem

what we usually want

Why the Lasso/¢*-hype?

among other things (which will be discussed later)
(1-penalty approach approximates (°-penalty problem

what we usually want

consider underdetermined system of linear equations:
Apxpﬁpxl = bp><17 rank(A) =m<p

¢%-penalty-problem: solve for 3 which is sparsest w.r.t. ||3]o
i.e. “Occam’s razor”

Donoho & Elad (2002), ...: if A'is not too ill-conditioned (in the
sense of linear dependence of sub-matrices)

sparsest solution 5 w.r.t. || - |[p-norm
= sparsest solution 3 w.r.t. || - ||;-norm

amounts to a convex optimization

and also Boosting ~ Lasso-type methods will be useful

What else do we know from theory?

assumptions: linear model Y = X5 + ¢ (or GLM)
» p =py, =0(n%) for some a < oo (high-dimensional)
> ||8]lo = no. of non-zero 3’s = o(n) (sparse)

» conditions on the design matrix X
ensuring that design matrix doesn’t exhibit “strong linear
dependence”

rate-optimality up to log(p)-term:
under “coherence conditions” for the design matrix,
and for suitable A

A I
EIA(Y) ~ B3] < Co21210100(Pn)
(e.g. Meinshausen & Yu, 2007)
note: for classical situation with p = ||3]jo < n

E[||foLs — B3] = 2P _ UzHﬁnHo

n

consistent variable selection:
under restrictive design conditions (i.e. “neighborhood
stability”), and for suitable A,

P[A(\) = Awue] = 1 — O(exp(—Cn~?))
(Meinshausen & PB, 2006)

variable screening property:
under “coherence conditions” for the design matrix (weaker
than neighborhood stability), and for suitable A

PLAN) 2 Ayue] — 1 (n — o)

(Meinshausen & Yu, 2007;...)

in addition: for prediction-optimal A* (and nice designs)

Lasso yields too large models
Pl A(N) 2 Ate] = 1(n— o0)
N——
[A|<O(min(n,p))
~» Lasso as an
excellent filter/screening procedure for variable
selection

i.e. true model is contained in selected models from Lasso

in addition: for prediction-optimal A* (and nice designs)

Lasso yields too large models
Pl A(N) 2 Ate] = 1(n— o0)
N——

| A|<O(min(n,p))

~» Lasso as an
excellent filter/screening procedure for variable
selection

i.e. true model is contained in selected models from Lasso

the Lasso filter is easy to use,
N —

prediction optimal tuning
"computationally efficient” and statistically accurate

O(np min(n,p))

Pef = 3, p = 1’000, n = 50; 2 independent realizations

Lasso Lasso
=} A o A
o 8 a4
) |
" o
v | w |
2} | 2} |
5 248 5 24
= : < ?
o}] i
S i S "
8 o 8 °
g4 E
o |
i °
' [ole] [e] '
° [) @ o | o]
& 4—-&% S ﬁ'!—'%&ﬁﬂ'!%—
00, o 1 900 o o 0% o
® o , o
f T T T T T f T T T T T
0 200 400 600 800 1000 0 200 400 600 800 1000
variables variables

prediction-optimal tuning

44 selected variables 36 selected variables

deletion of variables with small coefficients:

Adaptive Lasso (Zou, 2006): re-weighting the penalty function

p
/3 = argminy Z(Y — (XB3))? + /\Z WWJ 1
init,j

ﬁinit,j from Lasso in first stage (or OLS if p<n)

Zou (2006)

~» adaptive amount of shrinkage
reduces bias of the original Lasso procedure

Petf = 3, p = 1’000, n = 50
same 2 independent realizations from before

Adaptive Lasso Adaptive Lasso
33 33
> 0
0 o
o | 5
2 o |t
12} : w :
5 2 a 5 1
g 7 g o a
T ® T T |
8 : 8 0
5 i ¢
¢ w |1
' ;A
' o) ® o |
5 o @
2 *
5
| ° ° |
| o o S | —
T T T T T T T T T T T T
0 200 400 600 800 1000 0 200 400 600 800 1000
variables variables
13 selected variables 3 selected variables

(Lasso: 44 sel. var.) (Lasso: 36 sel. var.)

adaptive Lasso (with prediction-optimal penalty) always yields
sparser model fits than Lasso

Motif regression for transcription factor binding sites
in DNA sequences
n = 1300, p = 660

\ Lasso Adaptive Lasso Adaptive Lasso twice

no. select. variables 91 42 28
E[(Ynew — Ynew)z] 0.6193 0.6230 0.6226

(similar prediction performance might be due to high noise)

Computation of Adaptive Lasso

n 5 |
@ = argminﬂ Z(Yi _ (xﬁ)i)Z +)\Z J/31|

i =1 |Pinit

~» use linear transformation and Lasso computation

» transform X — X @) Bnj (1=1,...,p)
ﬁj:/@] ﬁlnlt] (J_l ..7p)

» use Lasso-computation ~» ﬁ

» back-transform é = G = 5’1 By (=1,...,p)

What we sometimes need/want in addition

» allowing for group-structure
~» categorical covariates
additive modeling (and functional data analysis, etc.)
» penalty for sparsity and smoothness
~» “flexible” additive modeling

» scalable computation ~ will be able to deal with p ~ 10°

The Group Lasso (Yuan & Lin, 2006)

high-dimensional parameter vector is structured into q groups
or partitions (known a-priori):

G1,...,G9 C{1,...,p}, disjointand Uy Gg ={1,...,p}

corresponding coefficients: gg = {f; j € G}

Example: categorical covariates
X @ ... XP) are factors (categorical variables)
each with 4 levels (e.g. “letters” from DNA)

for encoding a main effect: 3 parameters

for encoding a first-order interaction: 9 parameters

and soon ...

parameterization (e.g. sum contrasts) is structured as follows:
» intercept: no penalty
» main effect of X(): group G; with df = 3
» main effect of X(2): group G, with df = 3
> ...
» first-order interaction of X(1) and X @): G, with df =9
> ...

often, we want sparsity on the group-level
either all parameters of an effect are zero or not

often, we want sparsity on the group-level
either all parameters of an effect are zero or not

this can be achieved with the Group-Lasso penalty

q
A s(dfg) |5, 2

g=1 N——

typically s(dfg,) = ,/dfg, so that s(dfg,)||Bg,|l2 = O(dfy)

properties of Group-Lasso penalty

>

>

for group-sizes |Gy| = 1 ~ standard Lasso-penalty

convex penalty ~» convex optimization for standard
likelihoods (exponential family models)

> either (Gg(\)); =0or#£0forallj€g
» penalty is invariant under orthonormal transformation

e.g. invariant when requiring orthonormal parameterization
for factors

asymptotically:

the Group Lasso has optimal convergence rates (for prediction);
and some variable screening properties hold as well

(Meier, van de Geer & PB, 2008)

main assumptions:
» generalized linear model with convex negative likelihood function
> p = pn with log(pn)/n — 0 (high-dimensional)
> bounded group sizes: maxg df (Gg) < C < o0
>

number of non-zero group-effects < D < oo (sparsity)
can be generalized...

Ex5(X) = ns(X)[* = op('ogr(fn)) _ Op(logr(]pn))

Computation: exact and approximate solution paths
see also useR!2006 (Hastie) ~» nowadays, “we” do it differently

LARS algorithm (homotopy method) from Efron et al. (2004)
became very popular for computing Lasso in linear model

P
B(X) = argming|lY — X85+ 1> |5
il

piecewise linear solution path for
{B(A); A eRT}
BA) =6(A OV =)
B(A) = B(ko) +(k) Yk
kink-points €RP
for Ak < A < Aeqa

aaaaaaaaaaaaa

what we need to compute:
» Kink-points: A\g =0 < A1 < A2 < ... Amax
» linear coefficients € RP: ~1,. .., Ymax
number of different A¢’s,7«’s is O(n)

the LARS algorithm computes all these quantities in
O(np min(n, p)) essential operations
i.e. linearinpifp>n

no exact piecewise linear regularization path anymore for
» Group-Lasso penalty

» non-Gaussian likelihood with Lasso (or Group-Lasso)
penalty

LARS-algorithm cannot handle these problems exactly
~» approximate LARS-type algorithms
e.g. pathglm (Park and Hastie)

even more: if p is very large (e.g. p ~ 10°), LARS is slow for
Lasso in linear models

no exact piecewise linear regularization path anymore for
» Group-Lasso penalty

» non-Gaussian likelihood with Lasso (or Group-Lasso)
penalty
LARS-algorithm cannot handle these problems exactly
~» approximate LARS-type algorithms
e.g. pathglm (Park and Hastie)

even more: if p is very large (e.g. p ~ 10°), LARS is slow for
Lasso in linear models

other algorithms are needed...

Fast computation: coordinatewise descent
R packages grplasso and glmnet

coordinatewise approaches (“Gauss-Seidel”) are re-discovered
as efficient tools for Lasso-type convex optimization problems

Fu (1998) called it the “shooting algorithm”

note: “coordinatewise” because e.g. no gradient is available

coordinatewise descent: a generic description
for both, Lasso or Group-Lasso problems

» cycle through all coordinatesj =1,...,p,1,2,...
or i=1,...,9,12,...

> optimize the penalized log-likelihood w.r.t. 5 (or 5g,)
keeping all other coefficients gy, k # j (or k # G;) fixed

Lasso: (f1, 52 = 5(0) B = /Bj(O)v"'Jﬂp = ﬂ;(ao))

:

coordinatewise descent: a generic description
for both, Lasso or Group-Lasso problems

» cycle through all coordinatesj =1,...,p,1,2,...
or i=1,...,9,12,...

> optimize the penalized log-likelihood w.r.t. 5 (or 5g,)
keeping all other coefficients gy, k # j (or k # G;) fixed

Lasso: (1 = ﬂil),ﬂz, B = ﬂ(o csBp = ﬂ;(ao))

T

coordinatewise descent: a generic description
for both, Lasso or Group-Lasso problems

» cycle through all coordinatesj =1,...,p,1,2,...
or i=1,...,9,12,...

> optimize the penalized log-likelihood w.r.t. 5 (or 5g,)
keeping all other coefficients gy, k # j (or k # G;) fixed

Lasso: (81 = 6&1),[32 = ﬂ§1)7-..,/6j7--~,ﬂp = ﬂ;(ao))

T

coordinatewise descent: a generic description
for both, Lasso or Group-Lasso problems

» cycle through all coordinatesj =1,...,p,1,2,...
or i=1,...,9,12,...

> optimize the penalized log-likelihood w.r.t. 5 (or 5g,)
keeping all other coefficients gy, k # j (or k # G;) fixed

Lasso: (81 = BV, B = 85, 6 = 8,)

T

coordinatewise descent: a generic description
for both, Lasso or Group-Lasso problems

» cycle through all coordinatesj =1,...,p,1,2,...
or i=1,...,9,12,...

> optimize the penalized log-likelihood w.r.t. 5 (or 5g,)
keeping all other coefficients gy, k # j (or k # G;) fixed

Lasso: (f1, 52 = 5§”, B = /Bj(l)v sy fBp = ﬂél))

:

coordinatewise descent: a generic description
for both, Lasso or Group-Lasso problems

» cycle through all coordinatesj =1,...,p,1,2,...
or i=1,...,9,12,...

> optimize the penalized log-likelihood w.r.t. 5 (or 5g,)
keeping all other coefficients gy, k # j (or k # G;) fixed

Group LaSSO. (nguﬁgz :ﬁécz))7"‘7ﬁgj :ﬁéjO)7"'7/8gq :5é2))

!

coordinatewise descent: a generic description
for both, Lasso or Group-Lasso problems

» cycle through all coordinatesj =1,...,p,1,2,...
or i=1,...,9,12,...

> optimize the penalized log-likelihood w.r.t. 5 (or 5g,)
keeping all other coefficients gy, k # j (or k # G;) fixed

Group Lasso: (Bg, = 857, Bgy. -, 8g, = By s - Bog = B)

T

coordinatewise descent: a generic description
for both, Lasso or Group-Lasso problems

» cycle through all coordinatesj =1,...,p,1,2,...
or i=1,...,9,12,...

> optimize the penalized log-likelihood w.r.t. 5 (or 5g,)
keeping all other coefficients gy, k # j (or k # G;) fixed

Group Lasso: (fg, = 5], fg, = 85, Bgyr-- -+ Bay = BE))

-

coordinatewise descent: a generic description
for both, Lasso or Group-Lasso problems

» cycle through all coordinatesj =1,...,p,1,2,...
or i=1,...,9,12,...

> optimize the penalized log-likelihood w.r.t. 5 (or 5g,)
keeping all other coefficients gy, k # j (or k # G;) fixed

Group Lasso: (8g, = 557+ Bc, = B+ B = B -+ e

!

coordinatewise descent: a generic description
for both, Lasso or Group-Lasso problems

» cycle through all coordinatesj =1,...,p,1,2,...
or i=1,...,9,12,...

> optimize the penalized log-likelihood w.r.t. 5 (or 5g,)
keeping all other coefficients gy, k # j (or k # G;) fixed

Group LaSSO. (nguﬁgz :651)7"‘7ﬁgj :ﬁé’?)a"'vﬂgq :ﬁéi))

!

coordinatewise descent for Gaussian likelihood
(squared error loss)
» coordinatewise up-dates are easy: closed-form solutions
exist
» numerical convergence can be easily proved using theory
from Tseng (2001)

Coordinatewise descent for generalized linear models
(with non-Gaussian, convex negative log-likelihood)

difficulty:
coordinatewise/groupwise up-dates: no closed-form solution
exists

strategy which is fast: improve every coordinate/group
numerically, but not until numerical convergence

» use quadratic approximation of log-likelihood function for
improving/optimization of a single coordinate

» theory from Tseng & Yun (2007) ~» numerical convergence
can be proved

further tricks (Meier, van de Geer & PB, 2008)

» after a few runs, cycle only around the active set (where
coefficient is non-zero) and visit the remaining variables
only from time to time (e.g. every 10th time)
~» very fast algorithm for sparse problems

» don’t up-date the quadratic approximation at each step
a rough approximation will do it
in fact: can work with quadratic approximation from
previous A value

» for all grid-values of penalty parameters
A< A< ... < Am = Amax
warm-starts: 3(\) is used as initial value in the
optimization for 3(\¢_1)

all these “tricks” are mathematically justifiable: can still prove
numerical convergence (Meier, van de Geer & PB, 2008)

Software in R
for fast coordinatewise descent
» grplasso (Meier, 2006) for Group-Lasso problems
statistical and algorithmic theory in
Meier, van de Geer & PB (2008)
» glmnet (Friedman, Hastie & Tibshirani, 2007) for Lasso and
Elastic net
using exactly the building blocks from our approach...

other software

Madigan and co-workers:

Bayesian Logistic Regression (BBR, BMR, BXR)
http://www.bayesianregression.org/

How fast?

logistic case: p = 10°, n = 100
group-size = 20, sparsity: 2 active groups = 40 parameters
for 10 different A-values

CPU using grplasso: 203.16 seconds ~ 3.5 minutes
(dual core processor with 2.6 GHz and 32 GB RAM)

How fast?

logistic case: p = 10°, n = 100
group-size = 20, sparsity: 2 active groups = 40 parameters
for 10 different A-values

CPU using grplasso: 203.16 seconds ~ 3.5 minutes
(dual core processor with 2.6 GHz and 32 GB RAM)

we can easily deal today with predictors in the Mega’s
i.e. p~ 10° — 107

DNA splice site detection: (mainly) prediction problem
DNA sequence

...ACGGC... EEE GC [T ...AAC...
~~
potential donor site

3 positions exon GC 4 positions intron

response Y € {0, 1}: splice or non-splice site
predictor variables: 7 factors each having 4 levels

(full dimension: 47 = 16'384)
data:

training: 5’610 true splice sites
5’610 non-splice sites
plus an unbalanced validation set

test data: 4'208 true splice sites
89717 non-splice sites

logistic regression:

log <1ﬁ(:)(()x)> = [y + main effects + first order interactions + . ..

use the Group-Lasso which selects whole terms

r
~ oo —— GL
N & GLR
£ s b4 +- GUMLE
5 / \ A
g / !
[l 3 N\
A / \ / .
o \
VI -
5 & 5. RSN
oo IN oo 7 So-o” o
o 26 600" 8-0-6-878%0-0-4' 872
L L I B
1 3 5 7 13 15 17 24 26 34 36 45 a7 5:7
2 4 6 12 14 16 23 25 27 35 a1 46 56 67
Term
13
5
2
I(\Aﬂ7
o.
o ©0:0.0°0.000000-00000000000000000-00 900

L e e e
123 125 127 1:35 137 146 156 167 235 237 24:6 256 267 346 356 367 457 567
124 126 134 136 145 147 157 234 236 245 247 257 345 347 357 456 4567

Term

» mainly neighboring DNA positions show interactions
(has been “known” and “debated”)

» no interaction among exons and introns (with Group Lasso
method)

» no second-order interactions (with Group Lasso method)

predictive power:

competitive with “state to the art” maximum entropy modeling
from Yeo and Burge (2004)

correlation between true and predicted class

Logistic Group Lasso 0.6593
max. entropy (Yeo and Burge) | 0.6589

» our model (not necessarily the method/algorithm) is simple
and has clear interpretation

» it is as good or better than many of the complicated
non-Markovian stochastic process models (e.g. Zhao,
Huang and Speed (2004))

The sparsity-smoothness penalty (SSP)

(whose corresponding optimization becomes again a
Group-Lasso problem...)

for additive modeling in high dimensions

Zf Nte(i=1,...,n)

fi R — R smooth univariate functions
p>n

in principle: basis expansion for every fj(-) with basis functions

Bij,--.,Bm; where m = O(n) (or e.g. m = O(m?/2))
i=1...,p
~> represent
p _ P m
ij(xm) = ZZB iBrj(x
=1 =1 k=1

~» high-dimensional parametric problem

and use the Group-Lasso penalty to ensure sparsity of whole
functions

p
)‘Z | ﬁgj 2

B (ﬁl,jr“:ﬁm,j)T

drawback:
if different additive functions f;(-) have very different complexity

this naive approach will not be flexible enough
and this applies also to L,Boosting (PB & Yu, 2003)
R-package mboost (Hothorn et al.)

when using a large number of basis functions (large m) for
achieving a high degree of flexibility
~» need additional control for smoothness

Sparsity-Smoothness Penalty (SSP)
(Meier, van de Geer & PB, 2008)

p
M YA/ I6113 + Aa12(F)

j=1
126) = [(x))7ax

where f; = (§(X1), ... f(xW)T

~» SSP-penalty does variable selection (ﬂ = 0 for some j)
SSP-penalty is between COSSO (Lin & Zhang, 2006) and the
SpAM approach (Ravikumar et al., 2007)

but our SSP penalty is asymptotically oracle optimal
(while this fact is unclear for other proposals)

for additive modeling:

p p
f,....fp =argming 1Y = HI5+ A D /I3 + X2l2(F)
j=1 j=1

or for GAM:

p
f,....fp=argming ¢ —20(f1,..) + A0 D> (/lIfil13 + A212(F)
=1

assuming f; is twice differentiable

~ solution is a natural cubic spline with knots at Xi(j)
~» finite-dimensional parameterization with e.g. B-splines:

(=Thi 1-B A

nxm mx1

penalty becomes:

P
MY /I3 + A212(F)
j=1

P
=
= M) |67BB G+ 0] Q B
=1y i derivati
\ % integ. 2nd derivatives

= M BT (5 +29) 8

A=Ai(A2)

I

~ re-parameterize § = fj(\2) = R, RTRj = Aj = Aj(\2)
(Choleski)
penalty becomes

p
15512
j=1 I
depending on A,

A1

i.e., a Group-Lasso penalty

Small simulation study

comparison with L,Boosting with splines for additive modeling
R-package mboost (Hothorn et al.)

. 2 _ 2. spars.-smooth. pen. (SSP)
ratio of (f (Xnew) — f(Xnew))™ boosting (mboost)

n =150, p = 200, papct=4 n=100, p =80, pat=12

1.4
1.4

1.1
1.1

0.5

|
m_

0.5

right: true functions have very different degree of complexity

Meatspec: real data-set

meatspec data-set, available in R package faraway

p =100, n = 215
highly correlated covariates (channel spectrum measurements)
samples of finely chopped pure meat

Y: fat content
X: 100 channel measurements of absorbances

goal: predict fat content of new samples using 100 absorbances which can
be measured more easily

50 random splits in training and test data ~» (\?new — Ynew)?:

[prediction error SSP]=0.86
prediction error boosting' ~—

i.e. 14% better performance using SSP

Further improvements: Adaptive SSP penalty

straightforward to do and implement...

Further improvements: Adaptive SSP penalty

straightforward to do and implement... for reducing bias
new penalty:

VW lI613 + Aawa, 12(),
waj = 1/|[finitjll2, waj = 1/1(Finicj)

squared error adaptive SSP]

performance ratio: E| squared error SSP

model \ performance ratio
n =150, p = 200, per = 4 0.47
n =100, p = 80, pess = 12 0.77

~» substantial additional performance gains
effect of adaptivity seems even more pronounced
than for linear models

The general (new) Group Lasso penalty

what we used (with provable properties) for
» categorical data
» flexible additive modeling
» ... and many more problems

the general Group Lasso penalty:

q
A s A :
JZ; 5gj j - ﬂg,
pos. definite
A; may be of the form A; = Aj(\2)

HIF1a motif additive regression
for finding HIF 1« transcription factor binding sites on DNA
sequences

n = 287, p = 196: data from liver cell lines
Y;: binding intensity of HIF1« to a DNA-region i
(from CHIP-chip experiments)

many candidate motifs from de-novo computational algorithms
(MDScan)
e.g. ACCGTTAC, GAGGTTCAG, ...

Xi(j): score of abundance of candidate motif j in region i

goal: find the relevant variables (the relevant motifs) which
explain the binding intensity of HIF1« in an additive model

Y; = binding intensity in DNA region i
P
= ij(abundance of candidate motif j in region i) + error
j=1
(i=1,...,n)

5 fold CV for prediction optimal tuning

additive model with SSP has ~ 20% better prediction
performance than linear model with Lasso

SSP: 28 active functions (selected variables)

bootstrap stability analysis: select the variables (functions)
which have occurred at least in 50% among all bootstrap runs
~» only 2 stable variables /candidate motifs remain

Partial Effect
06 04 02 00 02 04 06 08
I I I L I L L L

/—

L o —— L1 AL L
75 85 95 105 115 125 135 145 80 90 100 110 120 130 140 150
Motif P1.6.23 Motif.P1.6.26

06 -04 -02 00 02 04 06 08

right panel: indication for nonlinearity

2

ke e CCTCe

variable/motif corresponding to left panel:

good additional support for relevance (nearness to
transcriptional start-site of important genes, ...)
ongoing validation with Ricci and Krek labs, ETH Zurich

bits

Riboflavin production with Bacillus Subtilis

Y : riboflavin production rate
covariates X € RP: expressions from p = 4088 genes
sample size n = 72 from a “homogeneous” population of
genetically engineered mutants of Bacillus Subtilis

goal: find variables / genes which are relevant for
riboflavin production rate and
which have not been modified so far

5-fold CV for prediction optimal tuning:
additive model (with SSP) and linear model with Lasso have
essentially the same prediction error

and estimated additive functions look very linear

but we can tell this only ex post having fitted an
additive model with p = 4088

SSP for additive model: 44 selected genes
Lasso for linear models: 50 selected genes

overlap: 40 genes selected by both methods/models

one interesting gene “XYZ” which
» is selected by both methods (after bootstrap stability
analysis)
» is biologically “plausible”
» has not been modified so far

High-dimensional data analysis and software in R

there are many things you can do...

mathematically well understood methods having “optimality”
properties

» (1-type (Lasso-type) penalization and versions thereof
grplasso: Fitting user specified models with Group Lasso penalty
gImnet: Lasso and elastic-net regularized generalized linear models
glasso: Graphical lasso- estimation of Gaussian graphical models
relaxo: Relaxed Lasso; lars: Least Angle Regression, Lasso and Forward Stagewise; penal ized: L1
(lasso) and L2 (ridge) penalized estimation in GLMs and in the Cox model; lasso2: L1 constrained

estimation aka 'lasso’; elasticnet: Elastic-Net for Sparse Estimation and Sparse PCA
» kernel methods

(less understood in terms of variable selection)
kernlab: Kernel Methods Lab

mathematically less exploited but also very useful
(in particular for mixed data-types)
» Boosting:
gbm: Generalized Boosted Regression Models
mboost: Model-Based Boosting
CoxBoost: Cox survival models by likelihood based boosting; GAMBoost: Generalized additive models by
likelihood based boosting
» Random Forest:
randomForest: Breiman and Cutler's random forests for
classification and regression

randomSurvivalForest: Ishwaran and Kogalur's Random Survival Forest

Conclusions

1. ¢ -type (Lasso-type) penalty methods
» are computationally tractactable for p > n
» have provable properties with respect to:
numerical convergence
and statistical asymptotic “optimality” (or consistency)
» have contributed to successful modeling in practice

2. the generalized Group-Lasso penalty

q
)‘Z \/ ﬁngiﬁgj
j=1

is for a broad range of high-dimensional problems
3. coordinatewise optimization of convex (non-smooth)
objective functions is fast and scales nicely in p
4. “new” R-software which is fast for p > n:
grplasso (Meier) for generalized Group Lasso
glmnet (Hastie, Friedman & Tibshirani) for Lasso
penGAM (Meier, in preparation) for flexible additive modeling

