Understanding product integration.

A talk about teaching survival analysis.

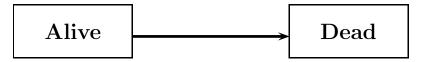
Jan Beyersmann, Arthur Allignol, Martin Schumacher. Freiburg, Germany

DFG Research Unit FOR 534

jan@fdm.uni-freiburg.de

- It is product integration that switches from hazards to probabilities.
- Product integration is not unusually difficult, but notoriously neglected.
- This talk: Use R for approaching product integration.
- One R function for approximating the true survival function and for computing Kaplan-Meier.
- Generalizes to more complex models; e.g. useful for numerical approximation and simulation with time-dependent covariates.

Survival analysis is hazard-based.



- Survival time T, censoring time C: $T \wedge C$, $\mathbf{1}(T \leq C)$
- The hazard is 'undisturbed' by censoring: cumulative hazard A(t), hazard $A(\mathrm{d}t) = P(T \in \mathrm{d}t \,|\, T \geq t) = P(T \land C \in \mathrm{d}t, T \leq C \,|\, T \land C \geq t)$
- A(dt) estimated by increments of the Nelson-Aalen estimator:

$$\widehat{A}(\mathrm{d}t) = \frac{\text{\# observed alive} \to \mathrm{dead\ transitions\ at\ }t}{\text{\# observed\ to\ be\ alive\ just\ prior\ }t}$$

• Kaplan-Meier is a deterministic function of the Nelson-Aalen estimator $\int \widehat{A}(\mathrm{d}t)$, and we have

$$\prod_{t_i \le t} \left(1 - \widehat{A}(dt_i) \right) \xrightarrow{P} \exp\left(- \int_0^t A(du) \right) = P(T > t)$$

The convergence statement is not very intuitive.

Product integration π

- Recall $A(du) = P(T < u + du \mid T \ge u)$. $\Rightarrow 1 - A(du) = P(T \ge u + du \mid T \ge u)$
- Survival function $P(T > t) = P(T \ge t + dt)$ should be an infinite product over [0,t] of 1 A(du)-terms:

$$S(t) = \mathcal{\pi}_0^t (1 - A(du))$$
 $pprox \prod_{k=1}^K (1 - \Delta A(t_k)) pprox \prod_{k=1}^K P(T > t_k | T > t_{k-1}),$

for a partition (t_k) of [0,t]

- $P(T > t) = \exp(-\int_0^t A(du))$: solution of a product integral.
- Kaplan-Meier is a product integral of the empirical hazards.
- Roadmap:
 - Check this via R.
 - Use exactly the same code for true survival function and Kaplan-Meier.

A simple R function for product integration

- Pass partition of [0,t] and cumulative hazard to prodint prodint <- function(time.points,A){ prod(1-diff(apply(X=matrix(times), MARGIN=1, FUN=A))) }
- E.g. exponential distribution with cumulative hazard A(t) = 0.9 · t
 A.exp <- function(time.point){return(0.9*time.point)}
 on the time interval [0,1]:
 times <- seq(0,1,0.001)
 prodint(times,A.exp);exp(-0.9*max(times))
 [1] 0.4064049
 [1] 0.4065697
- The vector of time points does not have to be equally spaced:
 > prodint(runif(n=1000, min=0, max=1), A.exp)
 [1] 0.4063475
- Conclusion: $\prod_{k=1}^K (1 \Delta A(t_k))$ approaches S(t) and we write $\mathcal{T}_0^t (1 dA(u))$ for the limit.
- Can be tailored to return a survival function.

From Nelson-Aalen to Kaplan-Meier via product integration

Recall: empirical hazard

$$\widehat{A}(dt) = \frac{\text{\# observed alive} \rightarrow \text{dead transitions at } t}{\text{\# observed to be alive just prior } t}$$

- Nelson-Aalen estimator $\int \widehat{A}(dt)$ of the cumulative hazard.
- Kaplan-Meier is the product integral of one minus Nelson-Aalen:

$$\widehat{S}(t) = \pi_0^t \left(1 - \widehat{A}(du) \right) = \prod_{t_k \le t} \left(1 - \widehat{A}(dt_k) \right)$$

Continuous mapping theorem:

$$\widehat{S}(t) = \boldsymbol{\pi}_0^t \left(1 - \widehat{A}(du) \right) \stackrel{P}{\to} \boldsymbol{\pi}_0^t \left(1 - A(du) \right) = S(t)$$

• Kaplan-Meier can be computed by prodint applied to $\int \widehat{A}(dt)$.

prodint computes Kaplan-Meier.

- 100 event times $\sim \exp 0.9$: event.times <- rexp(100,0.9)
- 100 censoring times cens.times $\sim u[0,5]$: runif(100,0,5)
- Observed times obs.times <- pmin(event.times, cens.times)
 About 24% of the observations censored.
- Compute Nelson-Aalen with mvna or

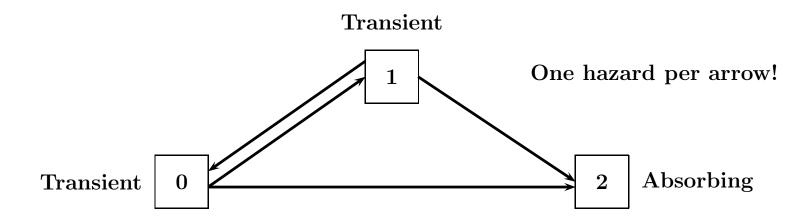
```
fit.surv <- survfit(Surv(obs.times,c(event.times<=cens.times)))
A <- function(time.point){
    sum(fit.surv$n.event[fit.surv$time <= time.point]/
        fit.surv$n.risk[fit.surv$time <= time.point])
}
and estimate the survival function at, e.g., time 1
> prodint(obs.times[obs.times<=1],A)
[1] 0.4370994</pre>
```

Value of fit.surv\$surv for time 1 is 0.4370994.

Why is product integration useful?

- Survival analysis is hazard-based.
- It is product integration that recovers both the underlying and the empirical distribution function.
- Properties of Nelson-Aalen estimator are easiest to study.
- Properties of product integration (continuity, Hadamard-differentiability) allow to transfer results to Kaplan-Meier: consistency, asymptotic distribution.
- Generalizes to quite complex models where Kaplan-Meier and the exp(-cumulative hazard)-formula fail, but are often erroneously applied.

Matrix-valued product integration for multivariate hazards.



- Closed formulae for transition probabilities usually not available.
- Can be approximated using product integration.
- Can be estimated by applying product integration to multivariate Nelson-Aalen: Aalen-Johansen.
- R: packages mvna, etm, matrix-valued function prodint
- E.g. useful for time-dependent covariates: estimation, simulation.
- Standard assumptions: time-inhomogeneous Markov or random censoring.

A brief summary and some references

- Move from hazards to probabilities thru product integration both in the modelling and the empirical world.
- We can and should do this teaching survival analysis.
- Works in more complex models (incl. competing risks), avoiding hypothetical quantities.
- R. Gill and S. Johansen. A survey of product-integration with a view towards application in survival analysis. *Annals of Statistics*, 18(4):1501–1555, 1990.
- O. Aalen and S. Johansen, An empirical transition matrix for non-homogeneous Markov chains based on censored observations, *Scand J Stat* vol. 5 pp. 141–150, 1978.
- P. Andersen, Ø. Borgan, R. Gill, and N. Keiding. Statistical models based on counting processes. Springer, 1993.
- J. Beyersmann, T. Gerds, and M. Schumacher. Letter to the editor: comment on 'Illustrating the impact of a time-varying covariate with an extended Kaplan-Meier estimator' by Steven Snapinn, Qi Jiang, and Boris Iglewicz in the November 2005 issue of The American Statistician. The American Statistician, 60(30):295–296, 2006.
- Arthur's talk on mvna.