
Can R Draw Graphs?

Paul Murrell

The University of Auckland

June 17 2006

R graphics

My first peer review experience ...

Reviewer’s comments

“An obvious reject, trivial, with no research component.”

The article was accepted!

R graphics

The article was called“Layouts: a mechanism for arranging plots
on a page” ... plots not graphs.

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

SystemV.3

SystemV.2

SystemV.0

TS4.0

Unix.TS3.0

Unix.TS.PPCB.Unix.3

PDP11.SysV

CB.Unix.2

CB.Unix.1

Unix.TS1.0

PWB2.0

USG3.0

Interdata

USG2.0

PWB1.2
USG1.0

PWB1.0

FifthEd

SixthEd

LSX

MiniUnix

Wollongong

SeventhEd

BSD1

Xenix

V32

Uniplus

BSD3

BSD2

BSD4

BSD4.1
EigthEd

NinethEd

Ultrix32

BSD4.2

BSD4.3

BSD2.8

BSD2.9 Ultrix11

V7M

Overview

Some new graphics features in R

(... with some applications to arranging graphs)

1 New drawing primitives:
• X-splines.
• Connectors.
• Clipping.

2 New ways to query graphical objects:
• grobX()
• grobY()

3 Importing graphics into R:

• The grImport package.

X-splines

Splines are smooth curves drawn relative to a set of control
points. Examples are Catmull-Rom splines, where the curve
interpolates the control points, and B-splines, where the curve
approximates the control points.

An X-spline is a smooth curve drawn relative to a set of control
points, where each control point has a parameter indicating
whether the curve should interpolate or approximate that particular
control point.

X-splines have been implemented in the grid package for R 2.3.0,
via the grid.xspline() function.

grid.xspline(x, y, id, id.lengths, default.units,
shape, open, arrow, repEnds, name, gp, vp)

grid.xspline()

Control points are specified as x and y locations, a shape
parameter specifies interpolation or approximation at each control
point, and the x-spline can be open or closed. It is also possible to
add an arrow to either end of an open spline.

Open Splines

●

● ●

●

0

−1 −1

0
●

● ●

●

0

−1 0

0
●

● ●

●

0

−1 1

0

●

● ●

●

0

0 −1

0
●

● ●

●

0

0 0

0
●

● ●

●

0

0 1

0

●

● ●

●

0

1 −1

0
●

● ●

●

0

1 0

0
●

● ●

●

0

1 1

0

Closed Splines

●

● ●

●

−1

−1 −1

−1
●

● ●

●

−1

−1 0

−1
●

● ●

●

−1

−1 1

−1

●

● ●

●

0

0 −1

0
●

● ●

●

0

0 0

0
●

● ●

●

0

0 1

0

●

● ●

●

1

1 −1

1
●

● ●

●

1

1 0

1
●

● ●

●

1

1 1

1

Applications of X-Splines

• A more interesting“pointer” from a label to a feature of
interest.

• Unusual shapes.

year

Hey diddle diddle

Humpty Dumpty

Jack and Jill

Oranges and lemons

Sing a song of sixpence

1600 1650 1700 1750 1800

It's boring
I'm snoring
I don't like your drawing
(with apologies to "It's raining, it's pouring")

●

●Whether you like it or not
Your eye is drawn to this spot

(with apologies to "Hickory Dickory Dock")

Connectors

A connector is a curve drawn between two points. The function
grid.curve() draws a range of connectors.

grid.curve(x1, y1, x2, y2, default.units,
curvature, angle, ncp, shape,
square, squareShape, inflect,
arrow, debug, name, gp, vp)

Connectors

●

●

(NULL) (inflect = TRUE) (angle = 135)

(arrow = arrow()) (ncp = 8) (shape = 0)

(curvature = −1) (square = FALSE)

●

●

●

●

● ●

(debug = TRUE)

(NULL) (inflect = TRUE) (angle = 135)

(arrow = arrow()) (ncp = 8) (shape = 0)

(curvature = −1) (square = FALSE)

●

●

●

●

● ●

(debug = TRUE)

Querying Graphical Objects

It has always been possible to determine the width and height of
graphical output via grobWidth() and grobHeight(). This is
useful for doing things like placing decorations around text.

Hello world

It is now also possible to determine locations on the boundary of
graphical output via grobX() and grobY().

grobX(x, theta)
grobY(x, theta) ● ●

●
●

●

●

●
●

●

Flow Diagrams

The combination of connectors and being able to determine the
boundary points of objects makes it possible to create simple flow
diagrams in R.

hex(.5, .8, name="h1")
hex(.5, .6, name="h2")
...
grid.curve(grobX("h2", 180),

grobY("h2", 180),
grobX("h1", 180),
grobY("h1", 180),
shape=1, ncp=10,
square=FALSE,
curvature=-1,
arrow=arr)

...

A

B

C

D

Clipping

It has always been possible to clip graphical output to a grid
viewport. This is typically done, for example, to ensure that
plotted data do not“spill” outside the plotting region.

It is now also possible to change the clipping region within a
viewport, via the grid.clip() function.

x

y

−1

0

1

2

5 10 15 20

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

x

y

−1

0

1

2

5 10 15 20

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

x

y

−1

0

1

2

5 10 15 20

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

Clipping

grid.clip(x, y, width, height,
just, hjust, vjust,
default.units, name, vp)

...
for (i in 1:length(year)) {
grid.clip(x=year[i], y=0,

width=1,
height=maxpop[i],
"native",
just="bottom")

pattern fill
gridPattern()

}
...

1993 1996 1998 2001

0

50

100

150

200

250

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

Estimated Population (max.) of Bengal Tigers
(in Bhutan)

Importing Graphics

R graphics can be exported in many different formats, including
PDF, PostScript, PNG, and (on Windows) WMF. This is useful,
for example, for including plots within larger reports.

The grImport package makes it possible to go the other direction
and import external graphics images for use within an R plot.

PostScript
[file]

PostScriptTrace()

ghostscript

RGML
[file]

readPicture() "picture"
[R object]

grid.picture()

grid.symbols()

The PostScript Bezier Tiger

%!PS-Adobe-2.0 EPSF-1.2

%%Creator: Adobe Illustrator(TM)

%%For: OpenWindows Version 2

%%Title: tiger.eps

...

.8 setgray

clippath fill

-110 -300 translate

1.1 dup scale

0 g

0 G

0 i

0 J

0 j

0.172 w

10 M

[]0 d

0 0 0 0 k

...

Importing the Tiger

PostScriptTrace("tiger.ps")

tiger <-
readPicture("tiger.ps.xml")

Using the Tiger as a Plot Backdrop

pushViewport(plotViewport())
...
grid.rect()
grid.xaxis(at=year)
grid.yaxis()
...
grid.picture(tiger)
...
popViewport() 1993 1996 1998 2001

0

50

100

150

200

250

Estimated Population (max.) of Bengal Tigers
(in Bhutan)

A Chess Board

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG"

"http://www.w3.org/TR/2001/REC-SVG...">

<!-- Created with Sodipodi -->

<svg version="1.0">

...

<g

style="font-size:12;"

id="g874">

<path

d="M 0 437 L 437 0 "

style="fill:none;fill-opacity:1"

id="path616" />

...

Convert SVG to PostScript
using InkScape

PostScriptTrace("chess.ps")

chess <-
readPicture("chess.ps.xml")

The Paths in the Chess Board

The picturePaths() function draws individual paths from a
picture, which makes it possible to identify elements of a picture.

"picture" objects can be subsetted, which makes it possible to
extract elements of a picture.

picturePaths(chess[125:136])

A Chess Piece as a Plotting Symbols

The number of moves required to complete chess games for
different opening gambits. From the career of Louis Charles Mahe
De La Bourdonnais (circa 1830).

grid.symbols(
chess[205:206],
x=games$num.moves,
y=1:ngames,
"native",
size=unit(0.5, "cm"))

20 40 60 80

07 C51 Evans Gambit

Match C51 Evans Gambit

London m 18 C33 King's Gambit Accepted

03 D20 Queen's Gambit Accepted

London B21 Sicilian, 2.f4 and 2.d4

09 C38 King's Gambit Accepted

London A03 Bird's Opening

11 C51 Evans Gambit

08 C38 King's Gambit Accepted

London D20 Queen's Gambit Accepted

13 C51 Evans Gambit

London D20 Queen's Gambit Accepted

03 C51 Evans Gambit

London C51 Evans Gambit

12 C33 King's Gambit Accepted

London D20 Queen's Gambit Accepted

18 B30 Sicilian

07 C51 Evans Gambit

04 D20 Queen's Gambit Accepted

London C53 Giuoco Piano

06 B21 Sicilian, 2.f4 and 2.d4

London m1 C23 Bishop's Opening

Combining Clipping and grImport

grid.picture(tiger, x=0.45,

FUN=greyify)

...

for (i in 1:length(year)) {

grid.clip(x=year[i], y=0,

width=1,

height=maxpop[i],

"native",

just="bottom")

tiger slice

grid.picture(tiger)

}

grid.clip()

... 1993 1996 1998 2001

0

50

100

150

200

250

Estimated Population (max.) of Bengal Tigers
(in Bhutan)

Combining Connectors, grobX(), grobY(), and grImport

router <- readPicture("router.ps.xml")
grid.picture(router, 0.5, 0.4, 0.1, 0.1, name="router2")
grid.picture(router, 0.25, 0.2, 0.1, 0.1, name="router3")
grid.curve(grobX("router2", 270), grobY("router2", 270),

grobX("router3", 0), grobY("router3", 0))

Authentication Server

Gateway

Koala

9.9.9.9 15.15.15.15

Summary

grid.xspline() Draw a smooth curve relative to
control points.

grid.curve() Draw a connector between two end
points.

grid.clip() Reset the clipping region within the
current viewport.

grobX(), grobY() Determine a location on the
boundary of a graphical object.

grImport Import PostScript images for draw-
ing in R.

Can R draw graphs?

Depending on what you meant by“graph”, the answer used to be
either“yes, of course!” or“yeeessss, sort of”. With the new features
in R 2.3.0, the answer in either case is a more emphatic“yes”.

Acknowledgements

• Richard Walton made significant improvements to the grImport code last
(Southern) Summer.

• The ggm package by Giovanni Marchetti and Mathias Drton was used to
produce the example node-and-edge graph in the introduction.

• The dates of first pulication of Nursery Rhymes came from
http://www.rhymes.org.uk/ and
http://www.bbc.co.uk/dna/h2g2/alabaster/A696125.

• The cartoon bubble text example was motivated by a recent R-help message by
Ivo Welch.

• The clipping example was motivated by a recent R-help message by ArrayChip.

• The tiger image is part of the ghostscript distribution; the tiger data are from
http://www.globaltiger.org/population.htm.

• The greyscale version of the tiger used the colorspace package by Ross Ihaka.

• The chess board image (by Jose Hevia) is from the Open Clip Art Library
http://openclipart.org/clipart//recreation/games/chess/chess_game_01.svg

• The chess data are from chessgames.com
http://www.chessgames.com/perl/chess.pl?page=1&pid=31596

• The network diagram used the Cisco Network Topology Icons
http://www.cisco.com/web/about/ac50/ac47/2.html

