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Regularization Paths
Trevor Hastie

Stanford University

drawing on collaborations with Brad Efron, Mee-Young Park, Saharon

Rosset, Rob Tibshirani, Hui Zou and Ji Zhu.
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Theme

• Boosting fits a regularization path toward a max-margin
classifier. Svmpath does as well.

• In neither case is this endpoint always of interest — somewhere
along the path is often better.

• Having efficient algorithms for computing entire paths
facilitates this selection.

• A mini industry has emerged for generating regularization
paths covering a broad spectrum of statistical problems.
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Least Squares Boosting

Friedman, Hastie & Tibshirani — see Elements of Statistical
Learning (chapter 10)

Supervised learning: Response y, predictors x = (x1, x2 . . . xp).

1. Start with function F (x) = 0 and residual r = y

2. Fit a CART regression tree to r giving f(x)

3. Set F (x) ← F (x) + εf(x), r ← r − εf(x) and repeat steps 2
and 3 many times
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Linear Regression

Here is a version of least squares boosting for multiple linear
regression: (assume predictors are standardized)

(Incremental) Forward Stagewise

1. Start with r = y, β1, β2, . . . βp = 0.

2. Find the predictor xj most correlated with r

3. Update βj ← βj + δj , where δj = ε · sign〈r, xj〉
4. Set r ← r − δj · xj and repeat steps 2 and 3 many times

δj = 〈r, xj〉 gives usual forward stagewise; different from forward
stepwise

Analogous to least squares boosting, with trees=predictors
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Example: Prostate Cancer Data

0.0 0.5 1.0 1.5 2.0 2.5

-0
.2

0.
0

0.
2

0.
4

0.
6

lcavol

lweight

age

lbph

svi

lcp

gleason

pgg45

0 50 100 150 200 250

-0
.2

0.
0

0.
2

0.
4

0.
6

lcavol

lweight

age

lbph

svi

lcp

gleason

pgg45

t =
P

j |βj |

C
o
effi

ci
en

ts

C
o
effi

ci
en

ts

Lasso Forward Stagewise

Iteration

June 2006 Trevor Hastie, Stanford Statistics 8

Linear regression via the Lasso (Tibshirani, 1995)

• Assume ȳ = 0, x̄j = 0, Var(xj) = 1 for all j.

• Minimize
∑

i(yi −
∑

j xijβj)2 subject to ||β||1 ≤ t

• Similar to ridge regression, which has constraint ||β||2 ≤ t

• Lasso does variable selection and shrinkage, while ridge only
shrinks.
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Diabetes Data

Lasso
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Why are Forward Stagewise and Lasso so similar?

• Are they identical?

• In orthogonal predictor case: yes

• In hard to verify case of monotone coefficient paths: yes

• In general, almost!

• Least angle regression (LAR) provides answers to these
questions, and an efficient way to compute the complete Lasso
sequence of solutions.
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Least Angle Regression — LAR

Like a “more democratic” version of forward stepwise regression.

1. Start with r = y, β̂1, β̂2, . . . β̂p = 0. Assume xj standardized.

2. Find predictor xj most correlated with r.

3. Increase βj in the direction of sign(corr(r, xj)) until some
other competitor xk has as much correlation with current
residual as does xj .

4. Move (β̂j , β̂k) in the joint least squares direction for (xj , xk)
until some other competitor x� has as much correlation with
the current residual

5. Continue in this way until all predictors have been entered.
Stop when corr(r, xj) = 0 ∀ j, i.e. OLS solution.
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• Not true, for example,
for stepwise regression.
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The LAR direction u2 at step 2 makes an equal angle with x1 and
x2.
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Relationship between the 3 algorithms

• Lasso and forward stagewise can be thought of as restricted
versions of LAR

• Lasso: Start with LAR. If a coefficient crosses zero, stop. Drop
that predictor, recompute the best direction and continue. This
gives the Lasso path

Proof: use KKT conditions for appropriate Lagrangian. Informally:

∂

∂βj

[1
2
||y −Xβ||2 + λ

∑
j

|βj |
]

= 0

⇔
〈xj , r〉 = λ · sign(β̂j) if β̂j �= 0 (active)
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• Forward Stagewise: Compute the LAR direction, but constrain
the sign of the coefficients to match the correlations corr(r, xj).

• The incremental forward stagewise procedure approximates
these steps, one predictor at a time. As step size ε → 0, can
show that it coincides with this modified version of LAR
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lars package

• The LARS algorithm computes the entire Lasso/FS/LAR path
in same order of computation as one full least squares fit.

• When p 	 N , the solution has at most N non-zero coefficients.
Works efficiently for micro-array data (p in thousands).

• Cross-validation is quick and easy.

Data Mining Trevor Hastie, Stanford University 24

Cross-Validation Error Curve
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• 10-fold CV error curve using
lasso on some diabetes data
(64 inputs, 442 samples).

• Thick curve is CV error curve

• Shaded region indicates stan-
dard error of CV estimate.

• Curve shows effect of over-
fitting — errors start to in-
crease above s = 0.2.

• This shows a trade-off be-
tween bias and variance.
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Forward Stagewise and the Monotone Lasso
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• Expand the variable set to in-
clude their negative versions
−xj .

• Original lasso corresponds to
a positive lasso in this en-
larged space.

• Forward stagewise corre-
sponds to a monotone lasso.
The L1 norm ||β||1 in this
enlarged space is arc-length.

• Forward stagewise produces
the maximum decrease in loss
per unit arc-length in coeffi-
cients.
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Degrees of Freedom of Lasso

• The df or effective number of parameters give us an indication
of how much fitting we have done.

• Stein’s Lemma: If yi are i.i.d. N(µi, σ
2),

df(µ̂) def=
n∑

i=1

cov(µ̂i, yi)/σ2 = E

[
n∑

i=1

∂µ̂i

∂yi

]

• Degrees of freedom formula for LAR: After k steps, df(µ̂k) = k

exactly (amazing! with some regularity conditions)

• Degrees of freedom formula for lasso: Let d̂f(µ̂λ) be the
number of non-zero elements in β̂λ. Then Ed̂f(µ̂λ) = df(µ̂λ).
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Back to Boosting

• Work with Rosset and Zhu (JMLR 2004) extends the
connections between Forward Stagewise and L1 penalized
fitting to other loss functions. In particular the Exponential
loss of Adaboost, and the Binomial loss of Logitboost.

• In the separable case, L1 regularized fitting with these losses
converges to a L1 maximizing margin (defined by β∗), as the
penalty disappears. i.e. if

β(t) = arg minL(y, f) s.t. |β| ≤ t,

then

lim
t↑∞

β(t)
|β(t)| → β∗

• Then mini yiF ∗ (xi) = mini yix
T
i β∗, the L1 margin, is

maximized.
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• When the monotone lasso is used in the expanded feature
space, the connection with boosting (with shrinkage) is more
precise.

• This ties in very nicely with the L1 margin explanation of
boosting (Schapire, Freund, Bartlett and Lee, 1998).

• makes connections between SVMs and Boosting, and makes
explicit the margin maximizing properties of boosting.

• experience from statistics suggests that some β(t) along the
path might perform better—a.k.a stopping early.

• Zhao and Yu (2004) incorporate backward corrections with
forward stagewise, and produce a boosting algorithm that
mimics lasso.
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Maximum Margin and Overfitting

Mixture data from ESL. Boosting with 4-node trees, gbm package in
R, shrinkage = 0.02, Adaboost loss.
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Lasso or Forward Stagewise?

• Micro-array example (Golub Data). N = 38, p = 7129,
response binary ALL vs AML

• Lasso behaves chaotically near the end of the path, while
Forward Stagewise is smooth and stable.
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Other Path Algorithms

• Elasticnet: (Zou and Hastie, 2005). Compromise between lasso
and ridge: minimize

∑
i(yi −

∑
j xijβj)2 subject to

α||β||1 + (1− α)||β||22 ≤ t. Useful for situations where variables
operate in correlated groups (genes in pathways).

• Glmpath: (Park and Hastie, 2005). Approximates the L1

regularization path for generalized linear models. e.g. logistic
regression, Poisson regression.

• Friedman and Popescu (2004) created Pathseeker. It uses an
efficient incremental forward-stagewise algorithm with a variety
of loss functions. A generalization adjusts the leading k

coefficients at each step; k = 1 corresponds to forward
stagewise, k = p to gradient descent.
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• Bach and Jordan (2004) have path algorithms for Kernel
estimation, and for efficient ROC curve estimation. The latter
is a useful generalization of the Svmpath algorithm discussed
later.

• Rosset and Zhu (2004) discuss conditions needed to obtain
piecewise-linear paths. A combination of piecewise
quadratic/linear loss function, and an L1 penalty, is sufficient.

• Mee-Young Park is finishing a Cosso path algorithm. Cosso
(Lin and Zhang, 2002) fits models of the form

min
β

�(β) +
K∑

k=1

λk||βk||2

where || · ||2 is the L2 norm (not squared), and βk represents a
subset of the coefficients.
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elasticnet package (Hui Zou)

• Min
∑

i(yi −
∑

j xijβj)2 s.t. α · ||β||22 + (1− α) · ||β||1 ≤ t

• Mixed penalty selects correlated sets of variables in groups.

• For fixed α, LARS algorithm, along with a standard ridge
regression trick, lets us compute the entire regularization path.
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glmpath package

• max �(β) s.t. ||β||1 ≤ t

• Predictor-corrector
methods in convex
optimization used.

• Computes exact path
at a sequence of index
points t.

• Can approximate the
junctions (in t) where
the active set changes.

• coxpath included in
package.
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Path algorithms for the SVM

• The two-class SVM classifier f(X) = α0 +
∑N

i=1 αiK(X, xi)yi

can be seen to have a quadratic penalty and piecewise-linear
loss. As the cost parameter C is varied, the Lagrange
multipliers αi change piecewise-linearly.

• This allows the entire regularization path to be traced exactly.
The active set is determined by the points exactly on the
margin.

12 points, 6 per class, Separated
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              Step:  483    Error: 1    Elbow Size: 90    Loss: 1.01
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SVM as a regularization method
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With f(x) = xT β + β0 and
yi ∈ {−1, 1}, consider

min
β0, β

N∑
i=1

[1−yif(xi)]++
λ

2
‖β‖2

This hinge loss criterion
is equivalent to the SVM,
with λ monotone in B.
Compare with

min
β0, β

N∑
i=1

log
[
1 + e−yif(xi)

]
+

λ

2
‖β‖2

This is binomial deviance loss, and the solution is “ridged” linear
logistic regression.
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The Need for Regularization

1e−01 1e+01 1e+03

0.
20

0.
25

0.
30

0.
35

1e−01 1e+01 1e+03 1e−01 1e+01 1e+03 1e−01 1e+01 1e+03

T
es

t E
rr

or

Test Error Curves − SVM with Radial Kernel

γ = 5 γ = 1 γ = 0.5 γ = 0.1

C = 1/λ

• γ is a kernel parameter: K(x, z) = exp(−γ||x− z||2).
• λ (or C) are regularization parameters, which have to be

determined using some means like cross-validation.
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• Using logistic regression + binomial loss or Adaboost
exponential loss, and same quadratic penalty as SVM, we get
the same limiting margin as SVM (Rosset, Zhu and Hastie,
JMLR 2004)

• Alternatively, using the “Hinge loss” of SVMs and an L1

penalty (rather than quadratic), we get a Lasso version of
SVMs (with at most N variables in the solution for any value
of the penalty.
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Concluding Comments

• Boosting fits a monotone L1 regularization path toward a
maximum-margin classifier

• Many modern function estimation techniques create a path of
solutions via regularization.

• In many cases these paths can be computed efficiently and
entirely.

• This facilitates the important step of model selection —
selecting a desirable position along the path — using a test
sample or by CV.


