Theme

Regularization Paths

Trevor Hastie
Stanford University
drawing on collaborations with Brad Efron, Mee-Young Park, Saharon Rosset, Rob Tibshirani, Hui Zou and Ji Zhu.

- Boosting fits a regularization path toward a max-margin classifier. Svmpath does as well.
- In neither case is this endpoint always of interest - somewhere along the path is often better.
- Having efficient algorithms for computing entire paths facilitates this selection.
- A mini industry has emerged for generating regularization paths covering a broad spectrum of statistical problems.

Linear Regression

Least Squares Boosting

Friedman, Hastie \& Tibshirani - see Elements of Statistical Learning (chapter 10)

Supervised learning: Response y, predictors $x=\left(x_{1}, x_{2} \ldots x_{p}\right)$.

1. Start with function $F(x)=0$ and residual $r=y$
2. Fit a CART regression tree to r giving $f(x)$
3. Set $F(x) \leftarrow F(x)+\epsilon f(x), r \leftarrow r-\epsilon f(x)$ and repeat steps 2 and 3 many times

Here is a version of least squares boosting for multiple linear regression: (assume predictors are standardized)
(Incremental) Forward Stagewise

1. Start with $r=y, \beta_{1}, \beta_{2}, \ldots \beta_{p}=0$.
2. Find the predictor x_{j} most correlated with r
3. Update $\beta_{j} \leftarrow \beta_{j}+\delta_{j}$, where $\delta_{j}=\epsilon \cdot \operatorname{sign}\left\langle r, x_{j}\right\rangle$
4. Set $r \leftarrow r-\delta_{j} \cdot x_{j}$ and repeat steps 2 and 3 many times
$\delta_{j}=\left\langle r, x_{j}\right\rangle$ gives usual forward stagewise; different from forward stepwise

Analogous to least squares boosting, with trees=predictors

Linear regression via the Lasso (Tibshirani, 1995)

- Assume $\bar{y}=0, \bar{x}_{j}=0, \operatorname{Var}\left(x_{j}\right)=1$ for all j.
- Minimize $\sum_{i}\left(y_{i}-\sum_{j} x_{i j} \beta_{j}\right)^{2}$ subject to $\|\beta\|_{1} \leq t$
- Similar to ridge regression, which has constraint $\|\beta\|_{2} \leq t$
- Lasso does variable selection and shrinkage, while ridge only shrinks.

Diabetes Data

Why are Forward Stagewise and Lasso so similar?

- Are they identical?
- In orthogonal predictor case: yes
- In hard to verify case of monotone coefficient paths: yes
- In general, almost!
- Least angle regression (LAR) provides answers to these questions, and an efficient way to compute the complete Lasso sequence of solutions.

Least Angle Regression - LAR

Like a "more democratic" version of forward stepwise regression.

1. Start with $r=y, \hat{\beta}_{1}, \hat{\beta}_{2}, \ldots \hat{\beta}_{p}=0$. Assume x_{j} standardized.
2. Find predictor x_{j} most correlated with r.
3. Increase β_{j} in the direction of $\operatorname{sign}\left(\operatorname{corr}\left(r, x_{j}\right)\right)$ until some other competitor x_{k} has as much correlation with current residual as does x_{j}.
4. Move ($\hat{\beta}_{j}, \hat{\beta}_{k}$) in the joint least squares direction for $\left(x_{j}, x_{k}\right)$ until some other competitor x_{ℓ} has as much correlation with the current residual
5. Continue in this way until all predictors have been entered. Stop when $\operatorname{corr}\left(r, x_{j}\right)=0 \forall j$, i.e. OLS solution.

$d f$ for LAR

- df are labeled at the top of the figure
- At the point a competitor enters the active set, the $d f$ are incremented by 1 .
- Not true, for example, for stepwise regression.

Relationship between the 3 algorithms

- Lasso and forward stagewise can be thought of as restricted versions of LAR
- Lasso: Start with LAR. If a coefficient crosses zero, stop. Drop that predictor, recompute the best direction and continue. This gives the Lasso path

Proof: use KKT conditions for appropriate Lagrangian. Informally:

$$
\begin{aligned}
\frac{\partial}{\partial \beta_{j}}\left[\frac{1}{2}\|\mathbf{y}-\mathbf{X} \beta\|^{2}\right. & \left.+\lambda \sum_{j}\left|\beta_{j}\right|\right]=0 \\
& \Leftrightarrow \\
\left\langle\mathbf{x}_{j}, \mathbf{r}\right\rangle & =\lambda \cdot \operatorname{sign}\left(\hat{\beta}_{j}\right) \quad \text { if } \hat{\beta}_{j} \neq 0 \text { (active) }
\end{aligned}
$$

The LAR direction \mathbf{u}_{2} at step 2 makes an equal angle with \mathbf{x}_{1} and x_{2}.

Cross-Validation Error Curve

- 10 -fold CV error curve using

lars package

- The LARS algorithm computes the entire Lasso/FS/LAR path in same order of computation as one full least squares fit.
- When $p \gg N$, the solution has at most N non-zero coefficients. Works efficiently for micro-array data (p in thousands).
- Cross-validation is quick and easy. lasso on some diabetes data (64 inputs, 442 samples).
- Thick curve is CV error curve
- Shaded region indicates standard error of CV estimate.
- Curve shows effect of overfitting - errors start to increase above $s=0.2$.
- This shows a trade-off between bias and variance.

Degrees of Freedom of Lasso

- The $d f$ or effective number of parameters give us an indication of how much fitting we have done.
- Stein's Lemma: If y_{i} are i.i.d. $N\left(\mu_{i}, \sigma^{2}\right)$,

$$
d f(\hat{\boldsymbol{\mu}}) \stackrel{\text { def }}{=} \sum_{i=1}^{n} \operatorname{cov}\left(\hat{\mu}_{i}, y_{i}\right) / \sigma^{2}=E\left[\sum_{i=1}^{n} \frac{\partial \hat{\mu}_{i}}{\partial y_{i}}\right]
$$

- Degrees of freedom formula for LAR: After k steps, $d f\left(\hat{\boldsymbol{\mu}}_{k}\right)=k$ exactly (amazing! with some regularity conditions)
- Degrees of freedom formula for lasso: Let $\hat{d f}\left(\hat{\boldsymbol{\mu}}_{\lambda}\right)$ be the number of non-zero elements in $\hat{\beta}_{\lambda}$. Then $E \hat{d} f\left(\hat{\boldsymbol{\mu}}_{\lambda}\right)=d f\left(\hat{\boldsymbol{\mu}}_{\lambda}\right)$.

- $d f$ are labeled at the top of the figure
- At the point a competitor enters the active set, the $d f$ are incremented by 1 .
- Not true, for example, for stepwise regression.
- When the monotone lasso is used in the expanded feature space, the connection with boosting (with shrinkage) is more precise
- This ties in very nicely with the L_{1} margin explanation of boosting (Schapire, Freund, Bartlett and Lee, 1998).
- makes connections between SVMs and Boosting, and makes explicit the margin maximizing properties of boosting.
- experience from statistics suggests that some $\beta(t)$ along the path might perform better-a.k.a stopping early.
- Zhao and Yu (2004) incorporate backward corrections with forward stagewise, and produce a boosting algorithm that mimics lasso.

Back to Boosting

- Work with Rosset and Zhu (JMLR 2004) extends the connections between Forward Stagewise and L_{1} penalized fitting to other loss functions. In particular the Exponential loss of Adaboost, and the Binomial loss of Logitboost.
- In the separable case, L_{1} regularized fitting with these losses converges to a L_{1} maximizing margin (defined by β^{*}), as the penalty disappears. i.e. if

$$
\beta(t)=\arg \min L(y, f) \quad \text { s.t. }|\beta| \leq t
$$

then

$$
\lim _{t \uparrow \infty} \frac{\beta(t)}{|\beta(t)|} \rightarrow \beta^{*}
$$

- Then $\min _{i} y_{i} F *\left(x_{i}\right)=\min _{i} y_{i} x_{i}^{T} \beta^{*}$, the L_{1} margin, is maximized.

Maximum Margin and Overfitting

Mixture data from ESL. Boosting with 4-node trees, gbm package in R, shrinkage $=0.02$, Adaboost loss.

- Micro-array example (Golub Data). $N=38, p=7129$, response binary ALL vs AML
- Lasso behaves chaotically near the end of the path, while Forward Stagewise is smooth and stable.

- Bach and Jordan (2004) have path algorithms for Kernel estimation, and for efficient ROC curve estimation. The latter is a useful generalization of the Svmpath algorithm discussed later.
- Rosset and Zhu (2004) discuss conditions needed to obtain piecewise-linear paths. A combination of piecewise quadratic/linear loss function, and an L_{1} penalty, is sufficient.
- Mee-Young Park is finishing a Cosso path algorithm. Cosso (Lin and Zhang, 2002) fits models of the form

$$
\min _{\beta} \ell(\beta)+\sum_{k=1}^{K} \lambda_{k}\left\|\beta_{k}\right\|_{2}
$$

where $\|\cdot\|_{2}$ is the L_{2} norm (not squared), and β_{k} represents a subset of the coefficients.

- Elasticnet: (Zou and Hastie, 2005). Compromise between lasso and ridge: minimize $\sum_{i}\left(y_{i}-\sum_{j} x_{i j} \beta_{j}\right)^{2}$ subject to $\alpha\|\beta\|_{1}+(1-\alpha)\|\beta\|_{2}^{2} \leq t$. Useful for situations where variables operate in correlated groups (genes in pathways).
- Glmpath: (Park and Hastie, 2005). Approximates the L_{1} regularization path for generalized linear models. e.g. logistic regression, Poisson regression.
- Friedman and Popescu (2004) created Pathseeker. It uses an efficient incremental forward-stagewise algorithm with a variety of loss functions. A generalization adjusts the leading k coefficients at each step; $k=1$ corresponds to forward stagewise, $k=p$ to gradient descent.

elasticnet package (Hui Zou)

- $\operatorname{Min} \sum_{i}\left(y_{i}-\sum_{j} x_{i j} \beta_{j}\right)^{2}$ s.t. $\alpha \cdot\|\beta\|_{2}^{2}+(1-\alpha) \cdot\|\beta\|_{1} \leq t$
- Mixed penalty selects correlated sets of variables in groups.
- For fixed α, LARS algorithm, along with a standard ridge regression trick, lets us compute the entire regularization path.

glmpath package

- $\max \ell(\beta)$ s.t. $\|\beta\|_{1} \leq t$
- Predictor-corrector methods in convex optimization used.
- Computes exact path at a sequence of index points t.
- Can approximate the junctions (in t) where the active set changes.
- coxpath included in package.

SVM as a regularization method

With $f(x)=x^{T} \beta+\beta_{0}$ and

$y_{i} \in\{-1,1\}$, consider
$\min _{\beta_{0}, \beta} \sum_{i=1}^{N}\left[1-y_{i} f\left(x_{i}\right)\right]_{+}+\frac{\lambda}{2}\|\beta\|^{2}$
This hinge loss criterion is equivalent to the SVM, with λ monotone in B.
Compare with

$$
\min _{\beta_{0}, \beta} \sum_{i=1}^{N} \log \left[1+e^{-y_{i} f\left(x_{i}\right)}\right]+\frac{\lambda}{2}\|\beta\|^{2}
$$

This is binomial deviance loss, and the solution is "ridged" linear logistic regression.

Path algorithms for the SVM

- The two-class SVM classifier $f(X)=\alpha_{0}+\sum_{i=1}^{N} \alpha_{i} K\left(X, x_{i}\right) y_{i}$ can be seen to have a quadratic penalty and piecewise-linear loss. As the cost parameter C is varied, the Lagrange multipliers α_{i} change piecewise-linearly.
- This allows the entire regularization path to be traced exactly. The active set is determined by the points exactly on the margin.

The Need for Regularization

- γ is a kernel parameter: $K(x, z)=\exp \left(-\gamma\|x-z\|^{2}\right)$.
- $\lambda($ or $C)$ are regularization parameters, which have to be determined using some means like cross-validation.

Concluding Comments

- Using logistic regression + binomial loss or Adaboost exponential loss, and same quadratic penalty as SVM, we get the same limiting margin as SVM (Rosset, Zhu and Hastie, JMLR 2004)
- Alternatively, using the "Hinge loss" of SVMs and an L_{1} penalty (rather than quadratic), we get a Lasso version of SVMs (with at most N variables in the solution for any value of the penalty.
- Boosting fits a monotone L_{1} regularization path toward a maximum-margin classifier
- Many modern function estimation techniques create a path of solutions via regularization.
- In many cases these paths can be computed efficiently and entirely.
- This facilitates the important step of model selection selecting a desirable position along the path - using a test sample or by CV.

