Context Problem Idea Performance Discussion **Future**

The R Genetics Project

▲□▶ ▲□▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶

500

¹Statistical Applications, Pfizer, Inc. ²Department of Computer Science, Yale ³Channing Laboratory, Harvard University ⁴Bristol-Myers Squibb ⁵Department of Mathematics, Imperial College ⁶Insightful, Inc. ⁷University of Chicago

Warnes, et al.

Gregory Warnes^{1,2} Scott Chasalow⁴ Giovanni Montana⁵ Michael O'Connell⁶ David Henderson⁶ Nitin Jain¹ Weiliang Qiu³ Junsheng Cheng⁷ Ross Lazarus³

Bioconductor foR Genetics

The R Genetics Project

Implementation

Abstract

The R Genetics Project is a collaborative effort to develop a complete set of tools for storing, accessing, manipulating, and analyzing genetics data, from small candidate gene studies consisting of a few genetic markers to large whole genome studies containing hundreds of thousands of markers. The initial goal is to provide a foundation of efficient data structures and easy to use manipulation functions. We intend this foundation to allow methods developers to quickly and easily develop packages implementing their own techniques, while maintaining interoperability. This will reduce the burden on both method developers and applied data analysis, who must currently move data between numerous packages and data formats.

The foundation R Genetics packages, GENETICSBASE, has reached sufficient maturity for introduction to the R community. This talk will describe the R Genetics project, provide an outline of the data structures and features within GENETICSBASE. We will give a brief demo of some of these features, as well as mentioning several additional packages which are building upon this common base, including FBAT, and GENETICSPED.

SQ (~