
R-parse: A Natural Language Processing Application of R

Over the last several years, the fields of Natural Language Processing and Computational
Linguistics have shifted their focus toward statistical methods, emphasizing probabilistic
grammars, Expectation Maximization, Maximum Entropy, and Log-linear modeling
frameworks. These developments make R an attractive environment in which to explore
the development of new computational linguistic models. One such model involving a
straightforward application of R is Latent Semantic Analysis/Indexing (LSA/LSI), which
employs Singular Value Decomposition (SVD) to perform a principal components-style
analysis of term frequencies in documents. This application is readily handled by writing
wrapper functions that perform specialized handling of the built-in matrix analysis and
plotting functions of R.

Yet, an impediment to the widespread use of R in NLP/CL research is the lack of good
facilities for the handling of traditional symbolic processing tasks such as language
parsing and generation. The fact that R is a member of the LISP family of programming
languages suggests that this could be done, since most symbolic NLP work has used
declarative languages like LISP and Prolog. At the same time, it remains to be seen
whether R itself is flexible enough to permit useful parsers to be written without resorting
to external language extensions.

This paper reports on efforts to develop a simple but flexible chart-based parser in R
called R-parse. Chart parsers are preferred in NLP applications, as they minimize the
redundant work of the parser by employing a data structure for recording attempted
parses. R-parse is implemented as a recursive function that returns a parsed string in the
form of a chart. Charts and grammar rules are both implemented as data frames, hence
both parser output and grammar are amenable to statistical analysis using functions such
as glm() (e.g. for log-linear modeling of the parsed output). Furthermore, a probabilistic
generator function R-gen accepts the same form of grammar as R-parse. Together, the
parser and generator allow one to model and study all aspects of the relationship between
probabilistic grammars and the languages they generate entirely within the resources of
R. The properties of R-parse and R-gen can presently be demonstrated on modest but
realistic grammars and language training corpora.

An obstacle for the development of R-parse has turned out to be R’s relatively
impoverished meta-programming facilities. Such features are necessary for implementing
exotic execution control schemes needed in parsers (e.g. backtracking) without resorting
to an entirely redesigned stack. Much of this work might be handled with some form of
environment-passing, but unfortunately, in its present implementation, R’s environment-
passing is not powerful enough as it provides no way to selectively prevent the
modification of variables in an environment. Hence intervening computations can
“spoil” the outcome of a computing on an environment that has since been inadvertently
modified. An improved meta-programming environment in R, perhaps made possible by
exposing more of R’s internal workings in the fashion of delay(), might permit more
elegant solutions to these problems. In the mean time, a working version of R-parse exists

which correctly records in the chart all possible parses of a string, including failed and
incomplete parses, for both context-free and regular grammars.

