
Good Programming Practice

Martin Mächler

Seminar für Statistik, ETH Zürich

20. Mai 2004

maechler@R-project.org

This talk is . . .

− not a one or two days’ course (from Insightful or . . .)

− not systematic and comprehensive like a book such as

Chambers “Programming with Data” (1998),

Venables + Ripley “S Programming” (2000),

Uwe Ligges “R Programmierung” (2004) [in German]

− not for complete newbies

− not really for experts either

− not about C (or Fortran or C++ . . .) programming

− not always entirely serious ,

1

This talk is . . .

− on R language programming

− my own view, and hence biased

− hopefully helping userR s to improve

− somewhat entertaining ?

2

“Good Programming Practice”

• “Good”, not “best practice”

• “Programming” using R :

• “Practice”: What I’ve learned over the years, with examples; but

3

. . . Practice . . .

but “The times they are a-changing” : Speed, memory and the

software (R 1.9.x as opposed to S-plus 3.4) have improved much!

? → many ‘tricks’ no longer needed (nor would some still apply).

? tradeoff speed ←→ memory is shifting:

Saving intermediate results may no longer be more efficient (not

even in C), but

are still nicer to read and maintain.

4

Programming = ?

Is Programming

• like car driving, something you learn and then know to do?

• a scientific process to be undertaken with care?

• a creative art?

→ all of them, but not the least an art .

−→ Your ‘programs’ should become works of art . . . ,

In spite of this, Guidelines or Rules for Good Programming Practice:

5

Rule 1: Work with Source files!

Source files aka ‘Scripts’ (but more).

• obvious to some,

not intuitive for useRs used to GUIs.

• Paradigm (shift):

Do not edit objects or fix() them, but modify (and re-evaluate)

their source!

In other words (from the ESS manual):

The source code is real.

The objects are realizations of the source code.

6

• Use a smart editor:

? syntax-aware: parentheses matching “(..))”

highlighting (differing fonts & colors syntax dependently)

? able to evaluate R code, by line, whole selection (region),

function, and the whole file

? command completion on R objects

such as

- Emacs + ESS (‘Emacs Speaks Statistics’) (all platforms)

- WinEdt + R-WinEdt (MS Windows)

- Alpha (Mac)

- Kate + R-Kate (KDE: Linux etc), (?),

- (there are more)

7

Good source code

1a. is well readable by humans

1b. is as much self-explaining as possible

\end{Rule 1: Work with Source files}

8

Rule 2: Good source code is well maintainable

(hence ‘well readable’ (‘1a.’ above))

2a. Do indent lines! (i.e. initial spaces)

2b. Do use spaces!

e.g., around <− , = , <= ,. . . , +, −, ;

after ’,’ ; before ’{’
2c. Do wrap long lines!

(at column 70–80; −→ do not put the editor in fullscreen mode)

9

well maintainable (Rule 2 cont.)

2d. Do use comments copiously! (about every 10 lines)
We recommend

‘##’ for the usually indented comments,

‘#’ for end-of-line comments (ESS: align to comment-column = 40),

and

‘###’ for the (major) beginning-of-line ones.

2e. Even better (but more laborious): Use Sweave (or another

“weave & tangle” system such as noweb)

10

... well readable code and the assignment operator

Beware: this is very controversial, and I am severely biased!

Some (including me, but by far not all!) believe that

using <− instead of = leads to far easier readable code:

‘ = ’ is also used much in function calls (incl.

list(a=.., b=..) and definitions (argument defaults) and

<− stands out visually

and can be marked up (by font/color) quite easily in syntax-aware

editors or pretty-printers, something really hard to achieve with =

\end{really-controversial}

11

. well maintainable (Rule 2 (end))

2 x. Do follow naming conventions for function argument names,
and if available also for new functions and/or classes.

But do not impose rigid rules here, since

1. programming is art (,)

2. The S language has a long history with many contributers:

We will live with some historical misnomers and have sometimes

deprecated and replaced others.

2 . . . Modularity, Clarity: “refine and polish your code” (V&R):

More on “well maintainable” in the following rules

12

Rule 3: Do read the documentation

and read it again and again . . .

(and—only then—submit bug reports ,)

1. Books: V&R’s, . . .

2. The manuals “An Introduction to R” (early),

“Writing R Extensions” (when you’re mutating from

useR to programmeR)

3. The help pages! and try their examples (in ESS)

4. Do use help.search()!! (and read its help page to find out

about fuzzy matching and the agrep argument!)

13

Rule 4: Do learn from the masters

An art is learned from the master artists:

Picasso, Van Gogh, Gauguin, Manet, Klimt . . .

John Chambers, Bill Venables, Bill Dunlap, Brian Ripley, Luke

Tierney, . . .

Read others’ source

14

Read the source – of packages

Nota bene: The R source of a package (in source state) is inside

<pkg>/R/*.R, and not what you get when you print the function!

e.g., plot or dev.print from package:graphics.

If the package source is not easily available to you, and if the

package is not installed “binary”, e.g.,

system . f i l e (” . . / g r a p h i c s /R/ g r a p h i c s ”))

gives you the name of a file with all the R source files concatenated.

Inside this file, you’ll find the real source, e.g., of dev.print.

15

Rule 5: Do not Copy & Paste !
because the result is not well maintainable:

Changes in one part do not propagate to the copy!

a) write functions instead

b) break a long function into several smaller ones, if possible

c) Inside functions : still Rule 5: “Do not Copy & Paste !!”

→ write local or (package) global helper functions

−→ use many small helper functions in NAMESPACE.
d) Possibly use

mat [comp l i ca ted , compcomp] <−
i f (A) A . express ion e l s e B. express ion

instead of

i f (A) mat [comp l i ca ted , compcomp] <− A. express ion
e l s e mat [comp l i ca ted , compcomp] <− B. express ion

16

Rule 6: Strive for clarity and simplicity

first! . . . and second . . . and again e.g., think about naming of

intermediate results (“self-explainable”) but use short names for

extended formulae

V.&R: “Refine and polish your code in the same way you would

polish your English prose” (using ‘dictionary’: your reference

material)

−→ modularity (“granularity”)

Optimization: much much later, see below

17

Rule 7: Test your code!

a. Carefully write (small) testing examples, for each function

(“modularity”, “unit testing”)

b. Next step: Start a ’package’ via package.skeleton(). This

allows (via R CMD check <pkg>)

• auto-testing (all the help pages examples).

use example(your function)
• specific testing (in a ./tests/ subdirectory, with or without

strict comparison to previous results)

• documenting your functions (and data, classes, methods):

takes time, but almost always leads you to improve your code !

18

Test your code! (Rule 7 cont.)

c. Use software tools for testing: Those of R CMD check are in the

standard R package tools.

Advanced (at version 0.0-0): Luke Tierney’s codetools

http://www.stat.uiowa.edu/~luke/R/codetools/

19

Optimizing code

Citing from V&R’s “S Programming” (p.172):

Jackson (1975) “Principles of Program Design” two

much quoted rules (on ‘code optimization’):

• Rule 1 Don’t do it.

• Rule 2 (for experts only) Don’t do it yet—that is not until

you have a perfectly clear and unoptimized solution.

to which we might add ’to the right problem by an efficient

method’.

20

Optimizing code - 2

1. Really do clean up and test your code and think twice before you

even start contemplating optimizing the code . . .

2. do measure, not guess:

From: Thomas Lumley (tlumley@u.washington.edu)
Date: 28 Feb 2001
To: R-help

There are two fundamental principles of optimisation
1) Don’t do it unless you need it
2) Measure, don’t guess, about speed.

The simple way to answer questions about which way is slower/more
memory intensive is to try it and see. Between Rprof(), unix.time() and
gc(), you have all the information you need.

21

“Case studies”

Case study 0 – The small features inside cov2cor(): Among

others, how to improve, for a matrix M on

1. diag(a) %*% M

2. M %*% diag(b)

22

Case study 1: function() returning function

Good examples:

1. help(ecdf), example(ecdf) (also splinefun(), etc)

2. The ‘polynom’ package by Bill Venabels et al. →
library(help=polynom) has an as.function() method for

polynomials

3. This talk: The ‘scatterplotd3d’ package

library(scatterplot3d) ## more modern: library(rgl) 1

?scatterplot3d

Look at the Value: section (ESS: “s v” (skip to value)), and then

at the Examples one, examples 5 and 6.
1if only rgl.close() wouldn’t seg.fault anymore

23

Case study 2 : The R Homepage Graphic Winner

24

Case study 3 : New boxplot() features

(in ‘R-devel’ or “R version 2.0.0 (unstable)”):

Using “local functions” for modularity and clarity.

An e-mail exchange MM with Arni Magnusson (UW, Seattle).

25

Specific Hints, Tips:

1. Subsetting (“[..]”):

(a) Matrices, arrays (& data.frames):

Instead of x[ind ,], use x[ind, , drop = FALSE] !

(b) tricky because of NAs

For data frames (and vectors): Use subset(x, ...) instead of

x[, \dots]
Or, inside “[..]”, often use match() or (a wrapper) %in% and

which().
2. Not x == NA but is .na(x)

3. Use ’1:n’ only when you know that n is positive:

Instead of 1:length(obj), use seq(along = obj)

26

4. Do not grow objects:
Replace

rmat <− NULL
f o r (i i n 1 : n) {

rmat <− rb ind (rmat , l ong . computat ion (i ,))
}

by
rmat <− matrix (0 . , n , k)
f o r (i i n 1 : n) {

rmat [i ,] <− l ong . computat ion (i ,)
}

and if n can be large, it will pay off creating the transpose, column by column
instead of row by row:

tmat <− matrix (0 . , k , n)
f o r (i i n 1 : n) {

tmat [, i] <− l ong . computat ion (i ,)
}

27

5. Use lapply, sapply,
the new mapply (Apply a function to multiple arguments), or
sometimes the replicate() wrapper:

sample <− r e p l i c a t e (1000 , median (r t (100 , df =3)))
h i s t (sample)

6. Use with(<d.frame>,) and do not attach data frames

7. TRUE and FALSE, not ‘T’ and ‘F’ !

8. know the difference between ‘|’ vs ‘||’ and ‘&’ vs ‘&&’

and inside if (....) almost always use ‘||’ and ‘&&’!

9. use which.max(), . . . , findInterval()
10. Learn about ‘Regular Expressions’: ?regexp etc

11. (more if time permitted)

28

Handouts will be available from the useR! web page by next week.

That’s all Folks!

.. wishing you joy in R Programming!

Martin.Maechler@R-project.org

29

