
Packaging, Documentation and Testing

Packaging, Documentation
and Testing

Kurt Hornik

useR! 2004 2004-05-21

Packaging, Documentation and Testing

Packaging

useR! 2004 2004-05-21

Packaging, Documentation and Testing

What are packages?

Packages are not libraries

Packages are not collections of R code (files)

Packages are standardized units for extending R

useR! 2004 2004-05-21

Packaging, Documentation and Testing

Package metadata

Packages must provide the following info to R:

• name, version

• license, description, title, author, maintainer

Currently via a ‘DESCRIPTION’ file in DCF (Debian Control

File) format.

useR! 2004 2004-05-21



Packaging, Documentation and Testing

Example DESCRIPTION file

Package: pkgname

Version: 0.5-1

Date: 2004-01-01

Title: My first collection of functions

Author: Joe Developer <J.Developer@some.domain.net>, with

contributions from A. User <A.User@whereever.net>.

Maintainer: Joe Developer <Joe.Developer@some.domain.net>

Depends: R (>= 1.8.0), nlme

Suggests: MASS

Description: A short (one paragraph) description of what

the package does and why it may be useful.

License: GPL version 2 or newer

URL: http://www.r-project.org, http://www.another.url

useR! 2004 2004-05-21

Packaging, Documentation and Testing

Package structure

Packages (in source form) have a standardized hierarchical file

system representation:

• A directory (with the same name as the package)

• Certain top-level files in that directory: ‘DESCRIPTION’

(must!), ‘COPYING’, ‘NAMESPACE’, ‘configure’/‘cleanup’,

. . .

• Certain subdirectories of that directory: ‘R’, ‘man’, ‘data’,

‘src’, . . .

useR! 2004 2004-05-21

Packaging, Documentation and Testing

Package structure: details

• Subdirs ‘R’ and ‘man’ are for R code and documentation files

• Subdir ‘src’ is for foreign code that needs to be com-

piled/dynloaded.

R can automatically create “shared libraries” for dynloading

(DLLs) from C, C++ and Fortran code using Make

Developers can prepend (Makevars) or append (Makefile) to

the default mechanism

useR! 2004 2004-05-21

Packaging, Documentation and Testing

Package structure: details

• Subdir ‘data’ is for R “system data sets”, i.e., (collections

of) data objects to be made available via data() (i.e., via

load/source/read.table), not for “all data”

• Subdir ‘exec’ is for foreign code that needs to be interpreted

(Shell, Perl, Tcl, . . . )

• Subdir ‘inst’ is “taken as is”

useR! 2004 2004-05-21



Packaging, Documentation and Testing

Installing packages

To be available for extending R, packages must be installed to

libraries (directories where R knows to find installed packages),

using e.g. R CMD INSTALL or install.packages()

Installing from source does several things, such as

• Preformat documentation objects in plain text and HTML

formats;

• Create DLLs from foreign function code

• Maybe create a binary image of the R code

• Set up data structures with package index information

Currently, only minimal library-level install-time computing

useR! 2004 2004-05-21

Packaging, Documentation and Testing

Using packages

Function library() “loads” a package and adds it to the search

path.

Important distinction: some functions (help, data) use only pack-

ages in the search path, others (help.search, vignette) use all

available packages

Coming up: usePackage()

useR! 2004 2004-05-21

Packaging, Documentation and Testing

Creating packages

• “Just put everything where it should be”

• When starting from “just” R code, convenience function

package.skeleton() as a starting point

useR! 2004 2004-05-21

Packaging, Documentation and Testing

Building packages

Packages are distributed as single file archiving their contents;

creating this archive is called “building” the package (argh!)

Utility R CMD build

• Performs necessary cleanups and adds front-matter informa-

tion (NOTE: ‘Built’ tag in DESCRIPTION, eventually check-

sums, . . . )

• Creates the archive using a canonical file name

Can also have “binary packages” (more argh!)

useR! 2004 2004-05-21



Packaging, Documentation and Testing

Repositories

Packages can be distributed (over the web) via repositories (suit-

ably indexed collections of packages).

Available repositories include CRAN, Bioconductor, Omegahat

Current package management tools in R

• allow for directly installing packages from repositories

• allow for automatically updating installed packages when

newer versions are made available

• can do some package dependency handling

useR! 2004 2004-05-21

Packaging, Documentation and Testing

Package dependencies and reposTools

Dependencies are package metadata and registered in
‘DESCRIPTION’. Currently, two categories:

Depends includes in particular everything needed to successfully
load the package

Suggests needed “not necessarily” (e.g. suitably conditional-
ized code in examples or vignettes), but in order to exploit
the full functionality of the package

Package reposTools from Bioconductor provides next generation
client and server side tools for package/repository management

useR! 2004 2004-05-21

Packaging, Documentation and Testing

Packages, bundles and themes

Bundles are collections of packages to be distributed in a single

archive (recommended packages MASS class nnet spatial come

as the VR bundle)

Themes represent an ongoing Bioconductor development to cre-

ate collections of packages (comparable to e.g. Debian’s tasks)

useR! 2004 2004-05-21

Packaging, Documentation and Testing

Packages and frameworks

Currently, packages “cannot have a C-level API”

Other packages and R cannot find package headers and dynamic

libraries (to link against, may be different from something dyn-

loadable).

Well . . . let’s just say impossibly hard.

D T Lang is working on frameworks

useR! 2004 2004-05-21



Packaging, Documentation and Testing

Documentation

useR! 2004 2004-05-21

Packaging, Documentation and Testing

Documentation

• R documentation objects

• Package vignettes

• Other

useR! 2004 2004-05-21

Packaging, Documentation and Testing

R documentation objects

“Things” providing in particular object reference documentation

in a simple structured form

• Currently serialized files in R documentation (Rd) format

(“Rd files”), with a syntax superficially resembling (La)TeX

• Mandatory entries

\name \alias \title \description \keyword

• Other important entries

\usage \arguments \value \concept \examples

useR! 2004 2004-05-21

Packaging, Documentation and Testing

Aliases

Aliases register the “topics documented” by an Rd object.

Correspondence: help("foo") (or ?"foo") looks for \alias{foo}

entries.

I.e., for R functions or variables, the alias is just their name.

S4-related extensions of the question mark operator:

class ? foo docs for class “foo”
methods ? bar docs for methods for generic “bar”
? baz(ARGLIST) docs about method to be used in call
method ? baz(SIGLIST) docs about method with given siglist

useR! 2004 2004-05-21



Packaging, Documentation and Testing

Corresponding aliases for S4 classes and methods are of the form

CLASS-class

GENERIC,SIGLIST-method

Class-style vs methods-style documentation

Documentation shells can be generated using prompt(),

promptClass() and promptMethods().

useR! 2004 2004-05-21

Packaging, Documentation and Testing

Concepts and keywords

Keywords classify Rd objects according to a predefined tree (i.e.,

similar to “subject classifications” in maths/stats)

What about “real keywords”? R 1.8 has added the \concept

markup for “concept index entries”, e.g.

\concept{Kendall correlation coefficient}

\concept{Pearson correlation coefficient}

\concept{Spearman correlation coefficient}

(cf. e.g. Texinfo concept vs function/variable index)

useR! 2004 2004-05-21

Packaging, Documentation and Testing

Searching the R documentation system/objects

help() and ?() look for Rd objects with an alias matching exactly

the topic determined from their arguments, by default in the

packages in the search path.

help.search() looks for Rd objects with alias, concept or title (or

name or keyword, or combinations of all these) matching a given

char string, using either fuzzy matching or regular expression

matching, by default in all available packages.

useR! 2004 2004-05-21

Packaging, Documentation and Testing

Vignettes

A vignette is an integrated text document for which R knows
how to extract certain metadata (e.g., title and keywords) and
the R code inside them.

Allows for various computations, such as e.g. inserting terminal
or graphics output from running the code into the document.

Performed by the Sweave system in package utils, which cur-
rently knows at least about documents combining LATEX and R
using noweb or LATEX syntax.

Applications: dynamic report generation, “live” textbooks for
computing with R based on Bioconductor’s vExplorer(), . . .

Package vignettes, vignette packages and compendia.

useR! 2004 2004-05-21



Packaging, Documentation and Testing

Other documentation

Every file in ‘inst/doc’ will be installed to ‘doc’

But why not write a vignette?

useR! 2004 2004-05-21

Packaging, Documentation and Testing

Testing

useR! 2004 2004-05-21

Packaging, Documentation and Testing

Testing packages

“Many thanks for your submission but did you run R

CMD check on it?”

“Hmm, why does your version of R CMD check show

all these problems that mine does not know about?”

Can “test” packages using R CMD check

useR! 2004 2004-05-21

Packaging, Documentation and Testing

R CMD check

If possible, verifies installability as the basic test; then check

• availability and correctness of meta-information

• R code (syntactic correctness, common coding problems,

consistency of S3 generics and methods, . . . )

• R documentation, including correctness, consistency, and

completeness

• run-time behavior

etc., creating a standardized report

useR! 2004 2004-05-21



Packaging, Documentation and Testing

undoc

Early principle:

All user-level “objects” in a package must be documented.

I.e., everything shown by objects() must have (at least) an alias.

Trickier with “system” data sets, name spaces (can we have ex-

ported functions without a usage entry?), S4 classes and meth-

ods (how do we refer to the latter?) . . .

useR! 2004 2004-05-21

Packaging, Documentation and Testing

How to avoid the need for documenting

“I have 25 undocumented functions, but that’s ok,

they’re really for internal use only . . . ”

• Add a name space

• Use a leading dot for the names of these functions (.foo)

• Create a ‘package-internal.Rd’ file

useR! 2004 2004-05-21

Packaging, Documentation and Testing

codoc

Find inconsistencies between actual and documented “structure”

of R objects in a package.

• codoc() compares names and optionally also corresponding

positions and default values of the arguments of functions

(in general between code and \usage entries in the docs).

• codocClasses() and codocData() compare slot names of S4

classes and variable names of data sets, respectively.

useR! 2004 2004-05-21

Packaging, Documentation and Testing

Some unpleasant codoc details

As of R 1.9, documented default values are compared by default.

Special markup for indicating S3 and S4 methods:

\method{GENERIC}{CLASS}(ARGLIST)

(also works for replacement methods) and

\S4method{GENERIC}{SIGLIST}(ARGLIST)

if really needed . . . (“surprising arguments”)

Did you know about \synopsis? If so . . .

useR! 2004 2004-05-21



Packaging, Documentation and Testing

Package computing vs reporting

Most of R CMD check is based on R code in package tools.

R CMD check is an inflexible tool for providing reports on pack-

age QA status—the underlying R code provide a flexible and

extensible toolbox for (some aspects of) package computation.

“Everything is an object.”

“What you see is less than what you get.”

E.g., codoc() also provides info on usage entries which are not

valid R syntax

useR! 2004 2004-05-21

Packaging, Documentation and Testing

Run-time tests

• Running all code in the package Rd examples

• Running all code in the package vignettes

• Package-specific tests

useR! 2004 2004-05-21

Packaging, Documentation and Testing

Running all code in the package Rd examples

Early principle:

All examples must be executable.

Clear tension between providing “example usage” and compre-

hensive unit testing.

Currently: by default, examples are both shown and run; selec-

tion via \dontrun{} and \dontshow{}, respectively.

useR! 2004 2004-05-21

Packaging, Documentation and Testing

Package-specific tests

If there is a subdir ‘tests’, then by default

• ‘.Rin’ files are used to create ‘.R’ files

• ‘.R’ files are run through R creating ‘.Rout’ files (or,

‘.Rout.fail’ and exit in case of an error)

• ‘.Rout.save’ files are compared to the corresponding ‘.Rout’

ones

Extremely powerful and substantially underused mechanism!

useR! 2004 2004-05-21



Packaging, Documentation and Testing

Repository QA

CRAN operating principles: all packages must “pass” R CMD

check relative to the current release version of R at both time of

package submission and when a new (major/minor) version of R

is released.

Daily check process on CRAN, summary and timings

Summary & Outlook

useR! 2004 2004-05-21

Packaging, Documentation and Testing

Contact

Kurt Hornik

Abteilung für Computational Statistics

Institut für Statistik und Mathematik

Wirtschaftsuniversität Wien

Augasse 2–6, A-1090 Wien

Austria

email: Kurt.Hornik@wu-wien.ac.at

useR! 2004 2004-05-21


