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• Generalized and nonlinear mixed models
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What are multilevel models?

• The term was coined by Harvey Goldstein and colleagues

working at the Institute of Education in London and applied

to models for data that are grouped at multiple “levels”, e.g.

student within class within school within district. Goldstein,

Rasbash, and others developed computer programs ML3

(three levels of random variation), MLn (arbitrary number

of levels), and MLWin (user-friendly version for Windows) to

fit models to such data.

• Similar ideas were developed by Raudenbush and Bryk

(Michigan and Chicago) under the name “hierarchical linear

models” and incorporated in a program HLM.

• Both programs were extended to handle binary responses (i.e.

Yes/No, Present/Absent, . . . ) or responses that represent

counts.

What are multilevel models? (cont’d)

• To statisticians multilevel models are a particular type of

mixed-effects model. That is, they incorporate both

fixed effects: parameters that apply to the entire population

or well-defined subgroups of the population.

random effects: parameters that apply to specific experi-

mental units, which represent a sample from the popula-

tion of interest.

• The model is written in terms of the fixed-effects parameters

and the variances and covariances of the random effects.



Linear mixed models

We will write the linear mixed model as

y = Xβ + Zb + ε ε ∼ N (0, σ2I), b ∼ N (0, σ2Ω−1), ε ⊥ b

where

• The response is y (n-dimensional).

• The n × p model matrix X and the n × q Z are associated

with the fixed effects β and the random effects b.

• The “per-observation” noise ε is spherical Gaussian.

• The relative precision of the random effects is Ω.

Structure in the random effects

• The random effects b are associated with one or more
grouping factors f1, . . . , fk, each of length n.

• The number of distinct values in fi is mi. Typically at least
one of the mi is on the order of n.

• Each grouping factor is associated with an n×qi model matrix
Zi. The qi are often very small. For a variance components
model q1 = · · · = qk = 1.

• The random effects vector b is divided into k outer groups,
corresponding to the grouping factors. Each of these is
subsequently divided into mi inner groups of length qi,
corresponding to levels of that grouping factor.

• We assume that the outer groups are independent (Ω is block
diagonal in k blocks of size miqi) and the inner groups are
i.i.d. (each block of Ω is itself block diagonal consisting of
mi repetitions of a qi × qi matrix Ωi).

• Each Ωi is a symmetric, positive-definite matrix determined
by a qi(qi + 1)/2 parameter θi. These are collected into θ.

Exam scores in inner London

The exam scores of 4,059 students from 65 schools in inner

London are an example used by Goldstein, Rasbash et al. (1993).

> str(Exam)
‘data.frame’: 4059 obs. of 8 variables:
$ school : Factor w/ 65 levels "1","2","3","4",..: 1 1 1 1 1 1 1 1 1 1 ...
$ normexam: num 0.261 0.134 -1.724 0.968 0.544 ...
$ standlrt: num 0.619 0.206 -1.365 0.206 0.371 ...
$ gender : Factor w/ 2 levels "F","M": 1 1 2 1 1 2 2 2 1 2 ...
$ schgend : Factor w/ 3 levels "mixed","boys",..: 1 1 1 1 1 1 1 1 1 1 ...
$ schavg : num 0.166 0.166 0.166 0.166 0.166 ...
$ vr : Factor w/ 3 levels "bottom 25%","mi..",..: 2 2 2 2 2 2 2 2 2 2 ...
$ intake : Factor w/ 3 levels "bottom 25%","mi..",..: 1 2 3 2 2 1 3 2 2 3 ...

Exam score grouping factor

The (sole) grouping factor in the Exam data is school.

> summary(Exam[, "school", drop = FALSE])
school

14 : 198
17 : 126
18 : 120
49 : 113
8 : 102
15 : 91
(Other):3309

Models fit to these data will have n = 4059, k = 1 and m1 = 65.



Scottish secondary school scores

Scores attained by 3435 Scottish secondary school students on

a standardized test taken at age 16. Both the primary school

and the secondary school that the student attended have been

recorded.

> str(ScotsSec)
‘data.frame’: 3435 obs. of 6 variables:
$ verbal : num 11 0 -14 -6 -30 -17 -17 -11 -9 -19 ...
$ attain : num 10 3 2 3 2 2 4 6 4 2 ...
$ primary: Factor w/ 148 levels "1","2","3","4",..: 1 1 1 1 1 1 1 1 1 1 ...
$ sex : Factor w/ 2 levels "M","F": 1 2 1 1 2 2 2 1 1 1 ...
$ social : num 0 0 0 20 0 0 0 0 0 0 ...
$ second : Factor w/ 19 levels "1","2","3","4",..: 9 9 9 9 9 9 1 1 9 9 ...

ScotsSec grouping factors
> summary(ScotsSec[, c("primary", "second")])

primary second
61 : 72 14 : 290
122 : 68 18 : 257
32 : 58 12 : 253
24 : 57 6 : 250
6 : 55 11 : 234
1 : 54 17 : 233
(Other):3071 (Other):1918

Models fit to these data have n = 3435 and k = 1 or k = 2.

When k = 2, m1 = 148 and m2 = 19.

Scores on 1997 A-level Chemistry exam

Scores on the 1997 A-level Chemistry examination in Britain.

Students are grouped into schools within local education au-

thorities. Some demographic and pre-test information is also

provided.

> str(Chem97)
‘data.frame’: 31022 obs. of 8 variables:
$ lea : Factor w/ 131 levels "1","2","3","4",..: 1 1 1 1 1 1 1 1 1 1 ...
$ school : Factor w/ 2410 levels "1","2","3","4",..: 1 1 1 1 1 1 1 1 1 1 ...
$ student : Factor w/ 31022 levels "1","2","3","4",..: 1 2 3 4 5 6 7 8 9 10 ...
$ score : num 4 10 10 10 8 10 6 8 4 10 ...
$ gender : Factor w/ 2 levels "M","F": 2 2 2 2 2 2 2 2 2 2 ...
$ age : num 3 -3 -4 -2 -1 4 1 4 3 0 ...
$ gcsescore: num 6.62 7.62 7.25 7.50 6.44 ...
$ gcsecnt : num 0.339 1.339 0.964 1.214 0.158 ...

Chem97 grouping factors
> summary(Chem97[, c("lea", "school", "gender")])

lea school gender
118 : 969 698 : 188 M:17262
116 : 931 1408 : 126 F:13760
119 : 916 431 : 118
109 : 802 416 : 111
113 : 791 1215 : 99
129 : 762 908 : 94
(Other):25851 (Other):30286

Models fit to these data have n = 31022 and k = 1 or k = 2.

When k = 2, m1 = 2410 and m2 = 131.



Dallas TLI scores

The ’dallas’ data frame has 369243 rows and 7 columns. The

data are the results on the mathematics part of the Texas

Assessment of Academic Skills (TAAS) for students in grades

3 to 8 in the Dallas Independent School District during the years

1994 to 2000. Because all the results for any student who took

a test in the Dallas ISD are included, some of the test results

are from outside the Dallas ISD.

> str(dd)
‘data.frame’: 369243 obs. of 7 variables:
$ ids : Factor w/ 134712 levels "6","16","22",..: 1 2 3 4 5 6 6 7 7 8 ...
$ Sx : Factor w/ 2 levels "F","M": 2 2 2 1 1 1 1 2 2 2 ...
$ Eth : Factor w/ 5 levels "B","H","M","O",..: 2 1 2 2 1 2 2 2 2 1 ...
$ Year : int 1997 1998 2000 2000 1995 1994 1995 1994 1995 1994 ...
$ Gr : int 4 7 7 7 4 7 8 3 4 3 ...
$ Campus: Factor w/ 887 levels "1907041","1907110",..: 269 136 147 133 245 140 140 263 196 214 ...
$ tli : int 63 66 54 75 56 64 62 74 88 74 ...

Dallas grouping factors
> summary(dd[, c("ids", "Campus")])

ids Campus
1075648: 12 57905049: 10499
2306440: 11 57905051: 6177
2399735: 10 57905043: 5784
2588394: 10 57905042: 5581
3134529: 10 57905065: 5342
686265 : 9 57905052: 5151
(Other):369181 (Other) :330709

Models fit to these data have n = 369243 and k = 1 or k = 2.

When k = 2, m1 = 134712 and m2 = 887.

A penalized least squares problem

• We seek the maximum likelihood (ML) or the restricted

(or residual) maximum likelihood (REML) estimates of the

parameters β, σ2, and θ.

• The conditional estimates β̂(θ) and σ̂2(θ) and the conditional

modes b̂(θ) can be determined by solving a penalized least

squares problem, say by using the Cholesky decomposition.ZTZ + Ω ZTX ZTy

XTZ XTX XTy

yTZ yTX yTy

 = RTR, R =

RZZ RZX rZy
0 RXX rXy
0 0 ryy


where RZZ and RXX are upper triangular and non-singular.

Then

RXX β̂(θ) = rXy

RZZ b̂(θ) = rZy −RZX β̂

Estimation criteria

• The profiled estimation criteria, expressed on the deviance

(negative twice the log-likelihood) scale are
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• log |Ω| =

∑k
i=1 mi log |Ωi| and the log |Ωi| are easy to evaluate

because qi is small.

•
∣∣∣ZTZ + Ω

∣∣∣ = |RZZ |2 is easy to evaluate from the triangular

RZZ . In fact we use an alternative form of the Cholesky

decomposition as ZTZ + Ω = LDLT where L is unit lower

triangular and D is diagonal with positive diagonal elements.

Then log
∣∣∣ZTZ + Ω

∣∣∣ = ∑q
j=1 log djj.



Obtaining the Cholesky decomposition

• At this point it is a “mere computational problem” to obtain

the REML or ML estimates for any linear mixed model. The

little detail we need to work out is how to factor ZTZ +Ω =

LDLT.

• Although ZTZ + Ω can be huge, it is sparse and the sparse

Cholesky decomposition has been studied extensively.

• We can do even better than the general approach to the

Cholesky decomposition of sparse semidefinite matrices by

taking advantage of the special structure of ZTZ + Ω.

• Although not shown here this decomposition allows us to

formulate a general approach to an EM algorithm (actually

ECME) for the optimization and, furthermore, we can

evaluate the gradient and Hessian of the profiled objective

Symbolic analysis

• Sparse matrix methods often begin with a symbolic analysis

to determine the locations of the non-zeros in the result.

• Although we will need to do the LDL decomposition for many

different values of θ, we only need to do the symbolic analysis

once.

• We can do the symbolic analysis on the ZTZ matrix from the

variance components model, even if we plan to fit a model

with some qi > 1. From the symbolic analysis of the variance

components model and the values of the qi, i = 1, . . . , k we

can determine the structure of ZTZ and L for the more

general model.

Fill-reducing permutation

• A crucial part of the symbolic analysis is determining a fill-

reducing permutation of the rows and columns.

• In our case we consider only permutations of levels within

groups.

• For the variance components model the blocks within groups

are diagonal. Because the first block in L will also be diagonal

but other blocks can be “filled-in”, we order the factors by

decreasing mi.

• First factor is projected onto the other factors and a

fill-reducing permutation of the second diagonal block is

determined.

• This process is repeated for the remaining factors.

• Nested grouping factors, which do not need to have their

levels permuted, are detected as part of this process.

ScotsSec variance components Z’Z

Dimensions: 167 x 167
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Fitting a model
> summary(fm1 <- lme(attain ~ verbal * sex, ScotsSec, ~1|primary + second))
Linear mixed-effects model fit by REML
Fixed: attain ~ verbal * sex
Data: ScotsSec

AIC BIC logLik
14882.32 14925.32 -7434.162

Random effects:
Groups Name Variance Std.Dev.
primary (Intercept) 0.275458 0.52484
second (Intercept) 0.014748 0.12144
Residual 4.2531 2.0623

Fixed effects: Estimate Std. Error DF t value Pr(>|t|)
(Intercept) 5.9147e+00 7.6795e-02 3431 77.0197 < 2e-16
verbal 1.5836e-01 3.7872e-03 3431 41.8136 < 2e-16
sexF 1.2155e-01 7.2413e-02 3431 1.6786 0.09332
verbal:sexF 2.5929e-03 5.3885e-03 3431 0.4812 0.63041

Number of Observations: 3435
Number of Groups: primary second

148 19
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Model representation
> str(fm1@rep)
list()
- attr(*, "D")= num [1:167] 69.4 22.4 18.4 22.4 68.4 ...
- attr(*, "Gp")= int [1:3] 0 148 167
- attr(*, "Li")= int [1:434] 149 159 160 148 151 149 164 159 151 155 ...
- attr(*, "Lp")= int [1:168] 0 3 4 5 7 8 12 16 19 25 ...
- attr(*, "Lx")= num [1:434] 0.6480 0.1152 0.0144 0.3119 0.1627 ...
- attr(*, "Omega")=List of 2
..$ primary: num [1, 1] 15.4
..$ second : num [1, 1] 288

- attr(*, "Parent")= int [1:168] 149 148 151 149 159 151 153 149 156 150 ...
- attr(*, "RXX")= num [1:5, 1:5] 0.0324 0.0000 0.0000 0.0000 0.0000 ...
- attr(*, "RZX")= num [1:167, 1:5] 0.02192 0.00884 0.00446 0.00883 0.02038 ...
- attr(*, "XtX")= num [1:5, 1:5] 3435 0 0 0 0 ...
- attr(*, "ZtX")= num [1:167, 1:5] 54 7 3 7 53 55 22 15 33 18 ...
- attr(*, "bVar")=List of 2
..$ primary: num [1, 1, 1:148] 0.125 0.212 0.233 0.212 0.127 ...
..$ second : num [1, 1, 1:19] 0.0547 0.0542 0.0548 0.0528 0.0519 ...

- attr(*, "deviance")= num [1:2] 14843 14868
- attr(*, "i")= int [1:470] 0 1 2 3 4 5 6 7 8 9 ...
- attr(*, "nc")= int [1:4] 1 1 5 3435
- attr(*, "p")= int [1:168] 0 1 2 3 4 5 6 7 8 9 ...
- attr(*, "x")= num [1:470] 54 7 3 7 53 55 22 15 33 18 ...

ScotsSec example

• The fill-reducing permutation involves only the levels of

second and is determined by a 19× 19 matrix.

• In this case the fill-reducing is only moderately effective but

it is not that important. For the Dallas data it is important.

• There are 470 non-redundant non-zeroes in ZTZ + Ω, 167

in D, and 434 non-zero off-diagonals in L (the unit diagonal

elements of L are not stored) for a total of 601. All other

methods that use dense storage of the off-diagonal block

would require at least 2979 elements to store ZTZ.

• The iteration process using a moderate number of ECME it-

erations followed by quasi-Newton optimization with analytic

gradient is fast and stable.

• One can even fit large models to the Dallas data in a

reasonable amount of time.



ScotsSec example (cont’d)
> system.time(lme(attain ~ verbal * sex, ScotsSec, ~1 | primary +
+ second, control = list(EMv = TRUE, msV = TRUE, opt = "optim",
+ niterEM = 14)))

EM iterations
0 14876.878 8.70355 67.7961
1 14872.858 10.3663 81.3411
2 14870.897 11.6441 94.3742
3 14869.872 12.6156 106.565
4 14869.309 13.3494 117.823
5 14868.984 13.9012 128.164
6 14868.788 14.3146 137.651
7 14868.665 14.6234 146.360
8 14868.585 14.8535 154.371
9 14868.530 15.0243 161.758

10 14868.491 15.1508 168.588
11 14868.462 15.2442 174.920
12 14868.440 15.3127 180.806
13 14868.423 15.3629 186.290
14 14868.409 15.3993 191.412

initial value 14868.408855
final value 14868.324922
converged
[1] 0.1 0.0 0.1 0.0 0.0

Fitting linear mixed models

• Specification of the model is straightforward.

– Usual arguments for a model fitting function using for-

mula, data, na.action, subset, etc. The formula specifies

the response and the terms in the fixed-effects model.

– The general form of the random argument is a named list

of formulae (the names are those of the grouping factors).

Short-cuts are provided for common cases.

– No specification of nesting or crossing is needed.

– No special forms of variance-covariance matrices are used

(or needed - the one case that may be of practical use is

handled by allowing grouping factors to be repeated).

• Method is fast and stable. With an analytic gradient (and

Hessian) of the profiled criterion available, convergence can

be reliably assessed. (In some cases finite estimates do not

exist and the method should indicate this.)

Extensions

GLMM In a generalized linear mixed model the linear predictor

is expressed as Xβ + Zb.

NLM In a nonlinear mixed model there is an underlying nonlinear

model whose parameters each are expressed as Xβ + Zb for

(possibly different) model matrices X and Z.

• In each case, for the model without random effects, there

is an algorithm (IRLS or Gauss-Newton) that replaces that

model by a linear least squares model and iterates.

• To get a first approximate solution to the mixed model

estimates replace the least squares model by iterations of

the penalized least squares problem for linear mixed models.

• These algorithms do not give MLEs for the GLMM nor for

the NMM. However, they do get into a neighbourhood of the

MLEs.

Extensions

• After convergence switch to optimization of a Laplacian or

an adaptive Gauss-Hermite quadrature (AGQ) evaluation of

the marginal likelihood.

• Both Laplace and AGQ require evaluation of the conditional

modes, b̂(θ, β), for which the techniques we have described

can be used.



General aspects of R

• R, and the community that supports it, provide access to

state-of-the-art statistical computing and graphics

– Available for all major operating systems

– Available without regard to institutional wealth

– Accessible to users of many levels of expertise (I use it in

all my courses).

– A platform for “reference implementations” of methods

(see Brian Ripley’s address to the RSS).

• R (and the S language in general) encourage an interactive

approach to data analysis with heavy use of exploratory and

presentation graphics.

• The S language provides a high-level modeling language in

which you can concentrate on the model and not get bogged

down in details (indicator variables, etc.)

R and multilevel modeling

• Here we provide access to a simple, effective, and general

specification of linear mixed models and fast, space-efficient

algorithms for determining parameter estimates. Combined

with lattice graphics and other supporting technologies in R,

I hope this will have a substantial impact on the practice of

multilevel modeling.
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