
DSC 2001 Proceedings of the 2nd International
Workshop on Distributed Statistical Computing

March 15-17, Vienna, Austria
http://www.ci.tuwien.ac.at/Conferences/DSC-2001

K. Hornik & F. Leisch (eds.) ISSN 1609-395X

Orla: A data flow programming system

for very large time series

Gilles Zumbach∗ and Adrian Trapletti∗

Abstract

To analyze tick-by-tick financial time series, programs are needed which
are able to handle several millions of data points. For this purpose we have
developed a data flow programming framework called “Orla”.1 The basic
processing unit in Orla is a “block”, and blocks are connected to form a
“network”. During execution, the “data” flow through the network and are
processed as they pass through each block. The main advantages of Orla are
that there is no limit to the size of the data sets, and that the same program
works both with historical data and in real time mode. In order to tame the
diversity of financial time series, the Orla data structure is specified through
a BNF description called SQDADL, and the Orla data are expressions in this
language. For storage, the times series are written in a “tick warehouse” which
is configured completely by the SQDADL description. Queries to the tick
warehouse are SQDADL expressions and the repository returns the matching
time series. In this way, we achieve a seamless integration between storage and
processing, including real time mode. Currently, our tick warehouse contains
20’000 “elementary” time series. In this paper, we provide a brief overview of
Orla and present a few examples of actual statistical analysis computed with
Orla.

∗Olsen & Associates, Research Institute for Applied Economics, Seefeldstrasse 233, 8008 Zürich,
Switzerland. e-mail: firstname@olsen.ch

1Orla and the tick warehouse are the result of a company wide development over several
years, involving many individuals. The main contributers are: David Beck, Devon Bowen, Dan
Dragomirescu, Paul Giotta, Loic Jaouen, Martin Lichtin, Roland Loser, Kris Meissner, James
Shaw, Leena Tirkkonen, Robert Ward, and Gilles Zumbach.

New URL: http://www.R-project.org/conferences/DSC-2001/

http://www.R-project.org/conferences/DSC-2001/

Proceedings of DSC 2001 2

1 Introduction

The basic idea of Orla can be summarized as “data flowing through a network
of blocks” and is nicely illustrated by looking at the example given in figure 1.
Every Orla application can be represented by a network which in turn consists of
interconnected blocks. Each block performs a computation on the data flowing
through it, and the data are flowing between blocks along the connections.

���
� ���
��

V
2.

1

OrlaVolatility.#1 R3

OrlaRTSgenerate.#1 R18 OrlaRTSgenerate.#2 R5

OrlaChop.#1 R15

OrlaChop.#2 R12

OrlaSMSUniversal.#1 R7

OrlaDaVinci.#1 R1

OrlaProject.#1 R2

OrlaPrintLargeEvent.#1 R11

OrlaReadRepo.#1 R0

OrlaLaggedCorrelation.#1 R6

OrlaLaggedCorrelation.#2 R10

OrlaMA.#1 R17 OrlaMA.#2 R4

OrlaHistogram.#1 R16

OrlaHistogram.#2 R13

OrlaMakeVector.#1 R9

OrlaWriteAscii.#1 R19

OrlaPrintForTransform.#1OrlaSMSAdaptive.#1 R8

Figure 1: An example of an Orla network.

The main concepts used in Orla are therefore the datum, the block, the connec-
tion and the network:

• Datum (pl. Data): the unit of information flowing in the network.
Since we work with financial time series, the diversity of financial assets needs
to be represented in the datum. A datum can be as simple as a price for a
spot foreign exchange rate or as complicated as a forecast for an interest rate
yield curve. Because the data are not simple pairs of time stamps and values,
but are instead highly structured, a type is associated with each kind of data.
Datum structures and types are further explained in section 4.

Proceedings of DSC 2001 3

• Block: the basic processing unit.
A block receives data through a number of input ports, processes the data
according to some algorithm, and sends the data further down through its
output ports. The philosophy behind blocks is to implement at the block
level fairly elementary functionality and to obtain more complex algorithms
through a chain or network of blocks.

• Connection: the link between blocks.
A connection establishes a path for the data flow between output ports and
input ports of different blocks. Several connections may start from the same
output port, but only one connection must arrive at an input port (this is
required for a meaningful time ordering). The flow through a connection
is always a “valid” time series, i.e., a time ordered series of data with an
associated type.

• Network: the set of blocks, connections and data.
When a network is evaluated, the data flows through the network. Results
are written either continuously during the computation (e.g., when recording
a time trace of some computed time series quantities), or at the end of the
computation (e.g., when evaluating a global average).

The block structure of Orla imposes a “local” processing model. This has mainly
two implications: First, there are no other dependencies between blocks than the
connections in the network. A block communicates only through its ports on which
it receives and sends valid time series. Second, each datum carries all the needed
information for its processing by the blocks. For example, as some algorithms can
be implemented much more efficiently for regularly spaced time series, the typing
system of the data includes the “kind” of the time series (irregular or regular with
a given time interval between two subsequent data points), and the blocks can use
this information to optimize their computations. The block structure of Orla is
similar to a “Lego” world, and allows to achieve an optimal code reuse.

To summarize, Orla is a data-flow programming system. Its purpose is to:

• analyze unevenly spaced time series,

• process data sets of unlimited size, and

• work both in historical mode and in real time.

The first point is mainly a question of algorithms used for the actual statistical
computations. Most empirical studies work with discretely and equally spaced time
series. However, simple and efficient algorithms exist for the analysis of irregularly
spaced time series and are presented for example in [1]. To support this type of
analysis, the time stamp in Orla is not just an index but a meaningful time that
is also used for timing and synchronization issues. The second and third points in
the above list are byproducts of the data flow paradigm. Because the time series
are not loaded into main memory, Orla is not limited with respect to the size of
the data sets. We are working routinely with time series containing 105 to 107 data

Proceedings of DSC 2001 4

points, possibly computing vector valued time series with 50 variables per vector.
On the other hand, this implies that “incremental” algorithms have to be used as
for example the computation of the mean, but not of the median (which would
essentially require to order the full time series). Furthermore, because Orla is data
driven, it also works in real time for the delivery of value added information. A key
advantage here is that the same code can be used both for research using historical
data and for the real time delivery of products. This avoids the reimplementation
and testing of software already used and tested in historical mode. Hence, for us
Orla is the platform for economic research (in particular, for time series analysis)
and for the delivery of real time information. Moreover, Orla is also very flexible
with respect to the type of time series which can be analyzed. In principle, any
time series can be analyzed as long as the particular data structure is appropriately
specified (e.g., Orla could be used to analyze weather data, industry processing
data, electricity network data, etc.).

2 Working with Orla

Concretely, Orla is written in C++ and appears as a set of classes and libraries.
The blocks are grouped into libraries according to their functionality, and the user
needs to create the desired instances with the corresponding parameters. Presently,
the user needs only to write a main program which can be compiled and linked as
usual. 2 An elementary example that just read and write data is as follows:

OrlaReadRepo OrlaPrint-

The corresponding C++ code is

// create a network
OrlaNetwork network("A simple network");

// create a block which gets data from the repository
OrlaReadRepo in("FX(USD,ATS),Quote(,,),Source(,,),Filter(,,)");

// create a block which prints the data
OrlaPrint out(cout);

// bind together the network and the blocks
network >> in >> out;

// and run the network
network.run("01.01.2001", "31.01.2001");

2In principle, it would be easy to put a GUI interface on top of Orla where for example blocks
are created from pull down menus. However, the current implementation does not support such a
GUI interface.

Proceedings of DSC 2001 5

The last statement triggers the run time engine of Orla that will let the data with
time stamps in January 2001 flow through the network.

More generally, the user writes a high-level C++ program to perform the de-
sired task. This consists of statements creating an empty network, constructing
and binding the blocks, and running the network. All the “magic” happens when
running the network. During execution, the blocks are activated by the network
(more precisely by the scheduler contained in the network) by two kinds of events:

• The data: these events depend on the inputed time series and the blocks
upstream. They are essentially “random” as a block has no control over its
inputed data.

• A timer: scheduled events according to the physical clock, e.g., an event
every day at 16:00. Timers are used for example to create a regularly spaced
time series, say the number of ticks within the last day. These events are
essentially “deterministic” as a block itself must create the timer according to
its behavior. Timers are also used in real time to implement a “grace” time
interval (see below).

The scheduler guarantees that every block gets the events time ordered. In this way,
the block writer does not have to care about scheduling issues. It should also be
emphasized that the scheduling has to be time-wise efficient, particularly because
the granularity of the tasks performed by the blocks is small. In practical tests
with networks which perform mildly computationally intensive tasks, the scheduling
overhead is below 5% of the overall used CPU time. Another issue which we do not
further discuss is the strategy of the block scheduling in a network in order to avoid
large queues of data on input ports leading to an excessive memory consumption.
Essentially, this is controlled by “following” the data, i.e., by activating the blocks
downward of the last produced data (deep first strategy).

3 How Orla is working

The complete evaluation of a network is a succession of tasks:

• Check the sanity of the network, mainly data type checking and checking the
number of connections. This is done by each block by checking that it receives
the appropriate data type on each port. Possibly, blocks can grab memory
according to the number of ports or the length of the received data vector and
set timers.

• Activate the producer blocks. This will start the flow of data.

• Process incoming data or timer events for all the blocks.

• Possibly, switch to real time mode.

• Possibly, process and forward end-of-data conditions.

Proceedings of DSC 2001 6

• Let the network finish once everything is idle, namely return from the run
method.

The timing paradigm is to start networks in historical-time processing mode,
and to switch to real-time when caught up with the wall clock. This allows blocks
to build up their internal states with historical data, and then to switch to real
time. The changes of processing mode (historical → real-time, processing → end-
of-data) are trickling downward the network, similarly to the data. The important
point is that the scheduling is done differently in historical and real time mode.
For historical time, the scheduling is data and timer driven and the wall clock is
irrelevant. This corresponds to a simple ordering of the events (for every block),
essentially because the incoming events are known. In real time, the data are
processed as they are coming, while the timers are handled according to the wall
clock. Moreover, we want to have identical results if the same data are processed
in real time or historical mode; this is essential to have reproducibility of the real
time computations. A subtle point arising in real time is to add a bit of “slack” in
the scheduling. We are working in a distributed environment, where the data are
received, filtered, and stored on other computers in the local network. The time
stamps put on the data are set by the first computer that receives them from the
external source (e.g., from the data provider Reuters). Then, there are delays in
the processing upstream of an Orla network, while the data are filtered, stored and
forwarded inside the local network. The end result is that a datum with a given
time stamp is actually received a few milliseconds to a few seconds later in a running
Orla network. A clear scheduling problem appears with timers, e.g., if a datum has
a time stamp of 11:59:59, a timer is set at 12:00:00 and this datum is received by
the network only at 12:00:02. For this reason, a “grace” time interval δt is added
to the incoming events of blocks with multiple inputs (input ports and/or timers).
Namely for every event (data or timer) arriving at t, a timer is set at t + δt for
the actual processing of this event. This allows to correctly time order the events
occurring inside the grace time interval.

The main design criteria for Orla are:

• A high level of abstraction to hide underlying details. The users and even the
block writers are unaware of the scheduling and its complexity. This makes
Orla easy to learn and safe to use.

• Minimal overhead in scheduling the blocks and forwarding the data. The goal
has been to have a modular structure, which is efficient.

• A versatile datum structure. This topic deserves a full section, see section 4.

• Automatic “vectorization” on the time horizons. When analyzing financial
time series, it is often very instructive to investigate different time horizons.
An example is to analyze the price differences (returns) at increasing time
intervals, say 1h, 2h, 4h, etc.. In this case, the block that computes the returns
can be used with a vector of time horizons as argument in the constructor. The
output of this block is then a vector containing the respective returns. This
block can feed, say, a histogram block in order to compute the probability

Proceedings of DSC 2001 7

distribution of the returns. The histogram block itself recognizes that the
input is a vector and therefore computes a vector of histograms corresponding
to each value in the inputed vector. In this way, computational and diagnostic
blocks can be chained using scalar or vector data. This is a very powerful
feature of Orla as one simple network can analyze at once a time series at
various time horizons.

• Easily extensible by adding new blocks. This is important in order to get new
blocks written by users that are not aware of all the foundations and subtleties
of Orla.

• Only “valid values” are send. All algorithms computing moving values need
to be initialized with some data. Consider the example of a 1 day moving
average computation. Although a value could be issued already at the first
tick, one day of data is needed to properly initialize the internal states and to
provide a meaningful result. This first day during which the result is “invalid”
is called the build-up period. For some algorithms, no results can be produced
during the build-up of the internal states. Orla is designed to send only valid
data, i.e., to send only data after the build-up time interval of the particular
algorithm is elapsed. In this way, blocks are guaranteed to receive only valid
data. Moreover, blocks can return their build-up time, and the network can
calculate the cumulative build-up time of a network. In this way, the user
can easily specify a time interval for valid values, and the network can process
earlier data according to the network cumulative build-up time interval.

0 1 2 3 4

0 1 2

�
�
�
�	 ?

@
@
@
@R

�
�
�
�	

�
�
�
��?

A
A
A
AU

@
@
@
@R

Figure 2: The general block set-up.

Proceedings of DSC 2001 8

The block programmer’s view of a general block is as in figure 2. The block
has input and output ports with corresponding data types. The input types can be
queried (and are provided by the block upstream of each port). On the output side,
each block must provide the actual types of each output port. The blocks must
provide essentially three methods corresponding to the block initialization and set-
up, the processing of the data, and the end-of-data handling. As the network is
taking care of all synchronization and scheduling issues, this simplifies the task of
the block writer. For example, the data processing method possesses as argument
a time and a vector of simultaneous data corresponding to each input ports, with a
nil pointer indicating that one of the input ports has no datum at this time.

4 The data representation

Our goal is to work with financial data and with the whole variety of possible
financial contracts. Financial contracts range from the simplest instruments such
as spot foreign exchange rates which are characterized by a single number (the price)
to complex derivatives including more “parameters” like the expiry date, the strike
price, the detail of the derivative (e.g., European call option, American put option,
etc.) and the characteristic of the underlying. This is a vast world which contains
plenty of different instruments such as interest rates, futures, forwards, options,
swaps, options on futures, and so on. Beside, depending of the computation, a time
series with some fixed parameters might be desired, e.g., a 3 months interest rate on
USD. Or say for another computation, all values of the same parameters are desired,
e.g., in the construction of a yield curve on the USD all maturities are needed, but
the currency is still fixed. Clearly, there is no general rule to fix what are the
(constant) parameters and what is part of the time series (with changing values).
The distinction between “parameters” and time series “values” is meaningless as
this changes with the use of the time series. Therefore, the data structure needs
to be flexible enough to accommodate all possible financial contracts with their
particular characteristics. Potentially, all fields can be “values” or “parameters”
depending on the computation. For storing the data, the same problem occurs.

In order to represent any kind of financial securities in the Orla datum, the data
structure is given through a BNF description called SQDADL (SeQuential DAta
Description Language). The description of the whole world of financial securities
is given in approximately 6 pages of text. This simplification is made possible
because of the power and recursivity of the BNF description; the recursivity is used
in the description of the derivatives (a derivative depends on one or possibly several
underlying contracts). A general parser of SQDADL expressions is constructed from
the BNF specification. This ensures a completely generic approach without hard
coding of the financial peculiarities.

SQDADL expressions can be concrete or abstract. In a concrete expression,
all the fields have a value, e.g., “FX(USD, CHF)” specifies a spot foreign exchange
(FX) rate between the United States dollar (USD) and the Swiss franc (CHF). In an
abstract expression, some of the fields are empty with the meaning of “anything”,
e.g., in “FX(,)” or “FX(USD,)”. Furthermore, SQDADL expressions have a “is

Proceedings of DSC 2001 9

a” relationship, e.g., “FX(USD, CHF)” “is a” “FX(USD,)” “is a” “FX(,)”. This
powerful mechanism is used for type checking in Orla.

For data storage and retrieval the same technique is applied. We have developed
a tick warehouse as a special purpose financial time series repository. The tick
warehouse is configured completely with the SQDADL description, while the inter-
nal organization of the tick warehouse is hidden to the users. The abstract view of
the tick warehouse is that of a large store which understands SQDADL requests.
For storage, the data are “thrown” in the repository. The queries to retrieve data
are abstract SQDADL expressions, and the repository returns the matching time
series of concrete SQDADL ticks. In this way, we have a seamless integration be-
tween the tick warehouse and Orla. The internal organization of the tick warehouse
is optimized for time series in order to give a high throughput for the data request.
The tick store works also both in historical mode and in real time. A general re-
quest contains a start and end time for the time series; no end time means that the
request will continue with real time data. Currently, we are storing in the repository
20’000 time series (or 120’000 with a more stringent definition of “a” time series)
with an increment of 106 ticks per day.

5 A few example computations done with Orla

In this section, we give four examples of statistical computations carried out with
Orla. The data used are USD/CHF foreign exchange data from 1.1.1990 to 1.1.2000
and 1.1.2001, respectively.

Figure 3 shows an intra-week analysis of the volatility, namely a 30 minutes
volatility is computed followed by an average conditional to the time in the week.
Moreover, only the data during winter time are used, i.e., when Europe and the
US have no daylight saving time (DST). The figure shows very clearly the weekly
cycle of human activity with almost no activity during the week-end. Moreover,
the volatility during each day is the signature of the different open markets: first
the Japanese (and Asiatic) market with the very sharply defined opening at 0h and
the lunch break in Tokyo at around 4h. Then, the opening of the European market
occurs at around 7h followed by a weak lunch break. The sharp rise at around
13h corresponds to the opening of the American market, followed by the successive
closing of the European and American market. This cycle is repeated over the five
working days.

Figure 4 displays the correlation between the historical volatility σ[∆t](t) and
the realized volatility σ[∆t′](t + ∆t′). The historical volatility is computed with
data in the past of t over a time interval of ∆t. The realized volatility corresponds
to the future volatility and is computed using data in the future of t over a time
interval of ∆t′. Hence, the correlation between these two quantities is a measure
of the information contained in the historical volatility about the realized volatility
and can be used to forecast realized volatility. This computation has been done
using the vectorization capabilities on a range of time horizons. The figure shows
that fairly large correlations are present, and that realized volatility at a given time
horizon ∆t′ has the largest correlation with historical volatility with a slightly larger

Proceedings of DSC 2001 10

0 24 48 72 96 120 144 168

0.00

0.05

0.10

0.15

0.20

0.25

time in the week [hour]

vo
la

til
ity

Figure 3: The volatility conditional to the time in the week for winter time (no
DST) for USD/CHF. The axis is given in GMT time.

time horizon ∆t′.
Figure 5 shows the correlation between a change in historical volatility and re-

alized volatility. The change of volatility is similar to a derivative of volatility with
respect to time. The correlation is essentially a measure for the response of the
market to a change of volatility: if the volatility increases (decreases) and mar-
ket participants mostly do (do not) trade, then the realized volatility will increase
(decrease), resulting in a positive correlation. On the other hand, if market partic-
ipants are not influenced by changes of volatility, a zero correlation would result.
The figure shows the segmentation of the market in groups like intra-day traders
reacting to changes at all time scales or like long term players (e.g., pension funds)
influenced only by long term changes in the market. This correlation makes visible
the cascade of information from long term to short time horizons.

Finally, an example of a real time application using Orla is our Olsen Infor-
mation System (OIS). A demonstration version is available at http://www.oanda.
com/channels/investor/timing.shtml and then clicking on one of the links for
previewing the OIS. These computations are done at our company site using small
Orla networks in real time and storing the computed values in the tick warehouse.
Then, other C++ clients of the tick warehouse are broadcasting the values to the
java applets of the web browsers.

http://www.oanda.com/channels/investor/timing.shtml
http://www.oanda.com/channels/investor/timing.shtml

Proceedings of DSC 2001 11

References

[1] Gilles O. Zumbach and Ulrich A. Müller. Operators on inhomogeneous time
series. International Journal of Theoretical and Applied Finance, 4(1):147–178,
2001.

Proceedings of DSC 2001 12

0 5 10 15 20 25 30 35 40

40

35

30

25

20

15

10

5

0

realized volatility

hi
st

or
ic

al
 v

ol
at

ili
ty

0.0 0.1 0.2 0.3 0.4

linear correlation

Figure 4: The correlation between historical and realized volatility. The axes cor-
responds to the time intervals ∆t and ∆t′ in a logarithmic scale for time intervals
ranging from 1h20 to 57 days

Proceedings of DSC 2001 13

Figure 5: The correlation between the historical volatility derivative and the realized
volatility. The axes correspond to the time intervals ∆t and ∆t′ in a logarithmic
scale for time intervals ranging from 4h to 42 days

	Introduction
	Working with Orla
	How Orla is working
	The data representation
	A few example computations done with Orla

