
DSC 2001 Proceedings of the 2nd International
Workshop on Distributed Statistical Computing

March 15-17, Vienna, Austria
http://www.ci.tuwien.ac.at/Conferences/DSC-2001

K. Hornik & F. Leisch (eds.) ISSN 1609-395X

Hydra: A Java library for Markov Chain Monte

Carlo

Gregory R. Warnes ∗

Abstract

Hydra is an open-source, platform-neutral library for performing Markov Chain Monte Carlo.
It implements the logic of standard MCMC samplers within a framework designed to be easy to use
and to extend while allowing integration with other software tools. In this paper, we describe the
problem that motivated our work, outline our goals for the Hydra project, and describe the current
features of the Hydra library. We then provide a step-by-step example of using Hydra to simulate
from a mixture model drawn from cancer genetics, first using a variable-at-a-time Metropolis sampler
and then a Normal Kernel Coupler. We conclude with a discussion of future directions for Hydra.

Keywords: Markov Chain Monte-Carlo, Gibbs Sampling, Software Library

1 Introduction

Markov Chain Monte Carlo (MCMC) is a method of performing numerical integration of analytically
intractable functions that can expressed as distributions (12; 9). One strength of MCMC is that it can
simulate from distributions without requiring that the densities be properly normalized. This makes it
particularly useful for Bayesian statistical models, where properly normalizing the densities often requires
integration of analytically intractable functions over high-dimensional spaces.

After an initial burn-in period, a properly constructed MCMC sampler will generate a sequence of
(non-independent) samples, X0, X1, . . . , XN from a specified probability distribution, Π. Using these
samples, the expectations under Π of any function g can be estimated by computing the sample path
∗Gregory R. Warnes is a Coordinator, Biostatistics and Reporting, Pfizer Global Research and Development, MS 8260-

114, Eastern Point Road, Groton, CT 06340. E-mail: gregory r warnes@groton.pfizer.com. The author would like
to thank Adrian E. Raftery, Thomas Lumley, and Anthony Rossini of the Department of Statistics and Department of
Biostatistics of the University of Washington for helpful discussions and guidance. This research was supported in part by
NIH/NIAID Grant no. 5 T32 AI07450-09, NIH Grant no. 1 PO1 CA76466, NIH Grant no. 1 PO1 CA76466, and ONR
Grant no. N00014-96-1-0192.

New URL: http://www.R-project.org/conferences/DSC-2001/

http://www.R-project.org/conferences/DSC-2001/

Proceedings of DSC 2001 2

average Ê(g) = 1
N

∑N
t=0 g(Xt). As of this writing, two software packages are available that implement

Markov Chain Monte Carlo for statistical applications, WinBUGS and FBM.
WinBUGS (6; 7) is a software package for performing Bayesian inference using Gibbs sampling. It

provides tools for specifying the model, running the Gibbs sampler, and monitoring convergence using a
“point-and-click” graphical interface. A noteworthy feature is that it allows models to be specified using
either a text-based notation or via a graphical model created with the DoodleBUGS interface (16).

While WinBUGS is mature and is available free of charge from the MRC Biostatistics Unit web site
(17), it has several drawbacks. First, WinBUGS is designed to perform only Gibbs and componentwise
Metropolis sampling and does not allow specification of alternative sampling methods. As a consequence,
WinBUGS cannot be used when Gibbs sampling or Metropolis-within-Gibbs are inappropriate. Second,
the source code to WinBUGS is not available to the user. This makes it impossible for users to add features
to WinBUGS. Thus, users who require features (such as statistical distributions or sampling methods) not
provided by WinBUGS are forced to abandon the package entirely. In addition the inability to access
the source code prohibits the use of WinBUGS for experimentation with or customization of sampling
algorithms. This prevents WinBUGS from being used as a tool for research on MCMC methods.

Radford Neal’s FBM (“Flexible Bayesian Modeling”) software (13), first released in 1995, is a less well
known package that implements a variety of MCMC methods and includes the C source code. While FBM
is more flexible than WinBUGS, the FBM documentation and interface are considerably more difficult to
understand.

Both WinBUGS and FBM are restricted to specific operating systems. While older versions of BUGS were
available for Unix systems, the current version is available only for systems running versions of Microsoft
Windows. FBM, on the other hand, is available only for Unix systems. In addition, neither package is
integrated with standard statistical tools. This requires the user to learn the interface of an additional
software package in order to use MCMC.

These drawbacks appear to have discouraged or prevented many users from taking advantage of the
considerable effort and expertise represented by WinBUGS and FBM. As evidence of the general dissatis-
faction with the available tools, all of the statisticians we have observed using or researching MCMC
write their own custom software. This results in considerable duplicated effort. Worse, since properly
debugging and verifying software algorithms is a difficult and time-consuming task, it is likely that many
of the hand-written software programs contain undetected errors. This can lead to the presentation of
faulty analyses. Finally, lack of integrated software support for MCMC has led many applied researchers
to avoid Bayesian statistical methods entirely.

2 Our Approach

Clearly, there is a need for better MCMC software. Our goal is is to produce a software tool that

1. implements standard MCMC techniques,

2. is easy to use,

3. is reliable,

4. is applicable to a wide variety of problems,

5. allows access to the underlying algorithms,

Proceedings of DSC 2001 3

6. can be easily customized and extended,

7. is integrated with traditional statistical packages, and

8. is available on all common computer platforms.

The Hydra MCMC library is a first step toward providing software that achieves these goals. Hydra is
a object-oriented library that implements the logic of standard MCMC methods. Although Hydra can
be used directly in custom MCMC programs, is designed to be used as a basis for MCMC software which
provides a more user-friendly interface and which is integrated with standard statistical packages.

Hydra is implemented using Java, a platform independent object-oriented language designed for
general programming tasks. We selected Java (10) because it enabled the library to meet a number of
our stated goals. First, Java’s support of formal interfaces facilitated the construction of a library that
is easy to use while being flexible and easy to extended. In particular, the use of interfaces permits users
to provide components of the MCMC algorithm that are tuned to their specific problem. This allows the
user to extend the Hydra package to support new problems or MCMC techniques without changing the
existing code. Second, Java provides features that reduce common programming errors and is supported
by a wealth of standard libraries and programming tools. Not only do Java’s features make it easier to
write code that is error-free, but they also make it easier to locate and correct bugs that do exist. This
supports construction of a reliable library and frees time otherwise spent debugging for the development
of additional features. Third, Java provides a clear interface for interacting with other languages. This
gives a well defined method for Hydra to be used with existing programming languages and software
applications. Although early versions of Java suffered from performance problems, recent versions of the
Java virtual machine (runtime) can provide speed comparable to C and C++ for numerical computations
(14; 11; 21; 15).

The remainder of this text assumes a basic familiarity with the Java language on the order of 4).

3 Constructing Metropolis-Hastings Samplers Using HYDRA

Hydra supports the full generality of Markov Chain Monte Carlo by providing a hierarchy of classes
implementing the most common MCMC techniques. Classes exist that implement the general Metropolis-
Hastings algorithm, the Metropolis sampler, and the Gibbs sampler. Hydra also implements the multi-
state Adaptive Metropolis Sampling (8) algorithm that forms the basis of Adaptive Direction Sampling
(5) and Normal Kernel Coupling (20). We will focus on the implementation of the Metropolis-Hastings
method since it includes the others as special cases.

The Metropolis-Hastings algorithm is the most general MCMC method used in practice and includes
as special cases Metropolis sampling, Gibbs sampling, and Adaptive Metropolis Sampling. The algorithm
is remarkably simple. Given a target distribution of interest Π, corresponding to the statistical model,
an initial starting location X0, and a proposal distribution Q(Xt), each iteration of the sampler consists
of four steps:

1. Propose a candidate state Y using a proposal distribution Q(Xt), which may depend on the
current state Xt:

Y ← Q(Xt)

Proceedings of DSC 2001 4

2. Compute the Metropolis-Hastings acceptance probability

α(Xt, Y) = min
{

1,
π(Y) q(Y → Xt)
π(X) q(Xt → Y)

}
= min

{
1,
p(Y) q(Y → Xt)
p(X) q(Xt → Y)

}
where π is a density corresponding to the target distribution Π, p(x) ∝ π(x) is an unnormalized
density, and (Y |Xt) is the conditional density for Y under Q(Xt).

3. Accept the proposed point Y and set

Xt+1 ← Y

with probability α(Xt, Y), otherwise
Reject the proposed point and set

Xt+1 ← Xt.

4. Increment time: t← t+ 1.

The sequence of X values generated by this algorithm converges to a (dependent) sample from Π provided
the proposal distribution Q meets certain conditions (19).

The CustomMetropolisHastingsSampler class implements the logic of Metropolis-Hastings samplers
using a target distribution (model), initial state, and proposal distribution specified by the user. This
is made possible by requiring the objects representing the target and proposal distributions to provide
certain methods. These methods are defined by the UnnormalizedDensity and GeneralProposal in-
terfaces, respectively. No restriction is placed on the initial state, save that it be compatible with the
user-specified target and proposal distributions.

To allow flexible reporting of the progress of the MCMC sampler, the CustomMetropolisHastings-
Sampler maintains a list of user defined objects that are notified at the completion of the acceptance
step of each iteration. When detailed reporting is selected, these “listeners” receive an object containing
a great deal of information about each MCMC iteration.

3.1 The UnnormalizedDensity Interface for Target Distributions

Target distributions implement the UnnormalizedDensity interface, which defines two methods:

public double unnormalizedPDF (Object s t a t e) ;
public double logUnnormalizedPDF (Object s t a t e) ;

These methods compute the (log) unnormalized density of the model for the state passed as a parameter.

3.2 The GeneralProposal Interface for Proposal Distributions

Proposal distributions implement the GeneralProposal interface, which has 4 methods:

public double conditionalPDF (Object next , Object cur rent) ;
public double logConditionalPDF (Object next , Object cur rent) ;

public double t r a n s i t i o n P r o b a b i l i t y (Object from , Object to) ;
public double l o g T r a n s i t i o n P r o b a b i l i t y (Object from , Object to) ;

Proceedings of DSC 2001 5

The methods conditionalPDF and logConditionalPDF compute the probability of generating the object
next when the current state is current. The second two methods perform the same computation, but
reverse the arguments1.

3.3 The MCMCListener Interface for Listener Objects

Objects that are notified at the completion of each MCMC iteration implement the MCMCListener inter-
face, which defines one method:

public void n o t i f y (MCMCEvent event) ;

The parameter of the notify method is an object containing information about the MCMC iteration.
This information can be used by the object in various ways. Possibilities include storing the current state
to a file, displaying it on a plot, and computing cumulative statistics.

When detailed reporting is disabled, the object passed to notify is a GenericChainStepEvent. This
object has a single field:

public Object cur rent ;

which contains the current state (Xt) of the sampler.
When detailed reporting is enabled, the object passed to notify is a DetailChainStepEvent which

has the additional fields:

public Object proposed ;
public Object l a s t ;
public double l a s tProb ;
public double proposedProb ;
public double forwardProb ;
public double reverseProb ;
public double probAccept ;
public double acceptRand ;
public boolean accepted ;
public double acceptRate ;

These fields provide a great deal of information about the MCMC iteration and are useful for debugging
and for evaluating the performance of different proposal distributions. The interpretation of each is given
in Table 1.

4 Example

The classes provided by Hydra can be used directly in compiled Java programs or interactively with
various Java-based tools, such as JPython and the Omegahat statistical language. For ease of presentation,
we will focus on the pure Java interface.

We will give an example by using Hydra construct two different samplers for a Binomial-BetaBinomial
mixture model for the loss of genetic material in esopageal cancers. We first show how to implement
the unnormalized density corresponding to Binomial-BetaBinomial mixture model in Java so that it can
be used with Hydra. Using this model we create a variable-at-a-time Metropolis sampler, and then a
Normal Kernel Coupler.

1The transitionProbability and logTransitionProbability are depreciated and will not be required in a future release
of the software.

Proceedings of DSC 2001 6

Table 1: Intepretation of the fields of the DetailChainStepEvent

Field Intepretation
public Object current; Xt

public Object proposed; Y
public double proposedProb; p(Y)
public Object last; Xt−1

public double lastProb; p(Xt−1)
public double forwardProb; q(Y |Xt−1)
public double reverseProb; q(Xt−1|Y)
public double probAccept; α(Xt−1, Y)
public double acceptRand; uniform value used to accept/reject
public boolean accepted; was Y accepted?
public double acceptRate; average value of α(Xt−1, Y)

4.1 Overview

There are four user-specified components of a Metropolis-Hastings sampler: target distribution (model),
initial state, proposal distribution, and uniform random number generator. The Hydra library provides
a reliable random number generator and a selection of standard proposal distributions, leaving the user
to construct the target distribution and initial state.

4.2 Creating a Target Distribution

To create an object representing the target distribution (model), the user needs to write a Java class
that implements the UnnormalizedDensity interface. For our example problem, we wish to implement
a class for the Bayesian hierarchical model 1

Xi ∼ η Binomial(Ni, π1)
+(1− η) Beta-Binomial(Ni, π2, ω2)

η ∼ Unif(0, 1)
π1 ∼ Unif(0, 1)
π2 ∼ Unif(0, 1)
ω2 ∼ Unif(0, 1/2)

where the density of the Beta-Binomial distribution is defined as

f(Xi|Ni, π2, ω2) =
(
n
x

) Γ(1
ω2

)

Γ(
π2
ω2

)Γ(
1−π2
ω2

)

Γ(x+
π2
ω2

)

Γ(n−x+
1−π2
ω2

)Γ(n+ 1
ω2

)

A Java class implementing the density for this model is provided in table 2. We shall we highlight
the programming details that allow use of this class as a target distribution.

First, we need to indicate to the Java compiler where to find the UnnormalizedDensity interface that
this class will implement. This is accomplished by the line

5 import org . omegahat . P robab i l i t y . D i s t r i b u t i o n s . UnnormalizedDensity ;

Proceedings of DSC 2001 7

Table 2: Class implementing the hierarchical Binomial Beta-Binomial model for the LOH data.

1 package org . omegahat . S imulat ion .MCMC. Examples ;
2

3 import java . lang . Math ;
4 import org . omegahat . G U t i l i t i e s . ArrayTools ;
5 import org . omegahat . P robab i l i t y . D i s t r i b u t i o n s . UnnormalizedDensity ;
6

7 public c lass Binomia l BetaBinomia l S impleLike l ihood implements UnnormalizedDensity
8 {
9 int loh [] = { 7 , 3 , 4 , 3 , 5 , 4 , 5 , 3 , 6 , 1 2 , 5 , 3 , 1 , 3 , 5 , 3 , 1 1 , 2 , 2 , 2 , 3 , 5 , 3 ,

10 4 , 6 , 3 , 1 , 4 , 5 , 1 9 , 5 , 5 , 6 , 5 , 6 , 2 , 0 , 0 , 6 , 4 } ;
11 int n [] = { 1 7 , 1 5 , 1 7 , 1 8 , 1 5 , 1 5 , 1 5 , 1 9 , 1 6 , 1 5 , 1 8 , 1 9 , 1 8 , 1 9 , 1 9 , 2 1 , 1 7 , 1 6 ,
12 1 2 , 1 7 , 1 8 , 1 8 , 1 9 , 1 9 , 1 5 , 1 2 , 1 6 , 1 9 , 1 6 , 1 9 , 2 1 , 1 5 , 1 3 , 2 0 , 1 6 , 1 7 ,
13 8 , 7 , 1 8 , 1 5 } ;
14

15 // unnormalized binomial dens i ty
16 double udb(int x , int n , double pi) { return Math . pow(pi , x)∗Math . pow(1.0− pi , n−x) ;}
17

18 // unnormalized beta−binomial dens i ty
19 double udbb(int x , int n , double pi , double omega) {
20 int r ; double tmp0 = 1 . 0 ; double tmp1 = 1 . 0 ; double tmp2 = 1 . 0 ;
21

22 for (r =0; r <= (x − 1) ; r++) tmp0 ∗= (pi + ((double) r) ∗ omega) ;
23 for (r =0; r <= (n − x − 1) ; r++) tmp1 ∗= (1 .0 − pi + ((double) r) ∗ omega) ;
24 for (r =0; r <= (n − 1) ; r++) tmp2 ∗= (1 .0 + ((double) r) ∗ omega) ;
25 return (tmp0 ∗ tmp1 / tmp2) ;
26 }
27

28 // unnormalized binomial−betabinomia l mixture dens i ty
29 double ud b bb (int x [] , int n [] , double eta ,
30 double pi0 , double pi1 , double omega1) {
31 double r e t v a l = 1 . 0 ;
32

33 for (int i =0; i < x . l ength ; i++)
34 r e t v a l ∗= (eta) ∗ udb (x [i] , n [i] , p i0) +
35 (1 . 0 − eta) ∗ udbb(x [i] , n [i] , p i1 , omega1) ;
36 return r e t v a l ;
37 }
38

39 // Constructor //
40 public Binomia l BetaBinomia l S impleLike l ihood () {}
41

42 // Log Unnormalized Density //
43 public double logUnnormalizedPDF (Object parms) {
44 return Math . l og (unnormalizedPDF (parms)) ; }
45

46 // Unnormalized Density //
47 public double unnormalizedPDF (Object paramObj) {
48 double [] parms = ArrayTools . Otod (paramObj) ;
49 double eta=parms [0] , p i0=parms [1] , p i1=parms [2] , omega1=parms [3] ;
50

51 // check range
52 i f ((eta < 0 . 0) | | (p i0 < 0 . 0) | | (p i1 < 0 . 0) | | (omega1< 0 . 0) | |
53 (eta > 1 . 0) | | (p i0 > 1 . 0) | | (p i1 > 1 . 0) | | (omega1>0 .5))
54 return 0 . 0 ;
55 else
56 return ud b bb (loh , n , eta , p i0 , p i1 , omega1) ;
57 }
58 }

Proceedings of DSC 2001 8

Now we can declare the class and indicate that it implements the UnnormalizedDensity interface.

7 public c lass Binomia l BetaBinomia l S impleLike l ihood implements UnnormalizedDensity

Next, the class needs a constructor that will accomplish any required initialization, such as observed
data. In this case, no initialization is required since the data is hard-coded into the class, so that the
line

40 public Binomia l BetaBinomia l S impleLike l ihood () {}

is sufficient.
Now, our class must provide the unnormalizedPDF and logUnnormalizedPDF methods. These meth-

ods are used by the Metropolis-Hastings sampler to compute the acceptance probability for a given
proposed state.

42 // Log Unnormalized Density //
43 public double logUnnormalizedPDF (Object parms) {
44 return Math . l og (unnormalizedPDF (parms)) ; }
45

46 // Unnormalized Density //
47 public double unnormalizedPDF (Object paramObj) {
48 double [] parms = ArrayTools . Otod (paramObj) ;
49 double eta=parms [0] , p i0=parms [1] , p i1=parms [2] , omega1=parms [3] ;
50

51 // check range
52 i f ((eta < 0 . 0) | | (p i0 < 0 . 0) | | (p i1 < 0 . 0) | | (omega1< 0 . 0) | |
53 (eta > 1 . 0) | | (p i0 > 1 . 0) | | (p i1 > 1 . 0) | | (omega1>0 .5))
54 return 0 . 0 ;
55 else
56 return ud b bb (loh , n , eta , p i0 , p i1 , omega1) ;
57 }

In this example, we have written separate functions that compute the unnormalized density, so these
methods simply convert the arguments to the appropriate type (doubles), check their range, call the
appropriate function.

Note that the the interface defines the argument passed to the unnormalizedPDF and logUnnormalized-
PDF as an Object. The user must decide what type of object will represent the model parameters. For
most purposes, an array of doubles (double[]) is an appropriate choice. For this reason, the predefined
proposal methods (see section B) all operate on arrays of doubles. Any other type of object can be used,
however, this requires the user to implement an appropriate proposal distribution.

4.3 Creating a Variable-at-a-time Metropolis Sampler

Now that we have a class that implements the unnormalized density for the Binomial-BetaBinomial
model, we can construct a MCMC sampler. We first implement a variable-at-a-time Metropolis sampler.
The complete class file for this sampler is shown in table 3.

Again we provide the Java compiler with the locations of the classes we will be using. This time there
are five import statements:

import org . omegahat . S imulat ion .MCMC. ∗ ;
import org . omegahat . S imulat ion .MCMC. Proposa l s . ∗ ;
import org . omegahat . S imulat ion .MCMC. L i s t e n e r s . ∗ ;
import org . omegahat . S imulat ion . RandomGenerators . ∗ ;
import org . omegahat . P robab i l i t y . D i s t r i b u t i o n s . ∗ ;

Proceedings of DSC 2001 9

Table 3: Class implementing a variable-at-a-time Metropolis sampler for the LOH model.

1 package org . omegahat . S imulat ion .MCMC. Examples ;
2

3 import org . omegahat . S imulat ion .MCMC. ∗ ;
4 import org . omegahat . S imulat ion .MCMC. Proposa l s . ∗ ;
5 import org . omegahat . S imulat ion .MCMC. L i s t e n e r s . ∗ ;
6 import org . omegahat . S imulat ion . RandomGenerators . ∗ ;
7 import org . omegahat . P robab i l i t y . D i s t r i b u t i o n s . ∗ ;
8

9 public c lass Binomial BetaBinomial SimpleExample {
10 stat ic public void main (St r ing [] argv) throws Throwable {
11

12 CollingsPRNGAdministrator a = new CollingsPRNGAdministrator () ;
13 PRNG prng = new CollingsPRNG (a . registerPRNGState ()) ;
14

15 UnnormalizedDensity t a r g e t = new Binomia l BetaBinomia l S impleLike l ihood () ;
16

17 double [] diagVar = new double [] { 0 . 0 8 3 , 0 . 0 8 3 , 0 . 0 8 3 , 0 . 0 4 2 } ;
18

19 SymmetricProposal proposa l =
20 new NormalMetropolisComponentProposal (diagVar , prng) ;
21

22 double [] s t a t e = new double [] { 0 . 9 0 , 0 . 2 3 , 0 . 7 1 , 0 . 4 9 } ;
23

24 CustomMetropol isHastingsSampler mcmc =
25 new CustomMetropol isHastingsSampler (s t a t e , t a r g e t , proposa l ,
26 prng , true) ;
27

28 MCMCListener l = new L i s t e n e r P r i n t e r () ;
29 MCMCListenerHandle lh = mcmc . r e g i s t e r L i s t e n e r (l) ;
30

31 mcmc. i t e r a t e (1 0) ;
32

33 }
34 }

Proceedings of DSC 2001 10

After declaring the object, we create a main function that will get called to actually do the work of
creating and running the MCMC sampler. Within main, the first object we need to create is a pseudo-
random number generator. The Hydra library provides an implementation of the Collings random
number generator (3), which can be created using the 2 lines:

12 CollingsPRNGAdministrator a = new CollingsPRNGAdministrator () ;
13 PRNG prng = new CollingsPRNG (a . registerPRNGState ()) ;

Next, we need to instantiate (create) a copy of our class that implements the unnormalized density
of the model. This is accomplished by

15 UnnormalizedDensity t a r g e t = new Binomia l BetaBinomia l L ike l ihood () ;

Now we instantiate the proposal distribution. For a Metropolis-Hastings sampler, there are several
choices (see Appendix B), including a variable-at-a-time random-walk proposal using a normal distribu-
tion. This is implemented by the NormalMetropolisComponentProposal class. Its constructor allows
the specification of a proposal variance for each parameter. We’ll use the variance of the parameters
under the prior:

22 double [] diagVar = new double [] { 0 . 0 8 3 , 0 . 0 8 3 , 0 . 0 8 3 , 0 . 0 4 2 } ;
23

24 SymmetricProposal proposa l =
25 new NormalMetropolisComponentProposal (diagVar , prng) ;

Now we need to define an initial state for the sampler. We’ll use the MLE, which is η = 0.90, π1 =
0.23, π2 = 0.71, ω2 = 0.49:

22 double [] s t a t e = new double [] { 0 . 9 0 , 0 . 2 3 , 0 . 7 1 , 0 . 4 9 } ;

With the random number generator, initial state, target distribution, and the proposal distribution
defined, we can create the actual sampler:

24 CustomMetropol isHastingsSampler mcmc =
25 new CustomMetropol isHastingsSampler (s t a t e , t a r g e t , proposa l ,
26 prng , true) ;

This gives us a working MCMC sampler. The final parameter is an optional flag indicating whether the
sampler should report all of the details about the MCMC iteration when it calls the listeners, or whether
to just report the new state. We wish to see all of the details, so we provide the value true.

We need to attach a listener to the MCMC sampler so that we can see the results of each iteration.
There is a variety of predefined listeners (see Appendix C), but we’ll start with the simplest listener. Its
notify method simply displays the object it receives.

28 MCMCListener l = new L i s t e n e r P r i n t e r () ;
29 MCMCListenerHandle lh = mcmc . r e g i s t e r L i s t e n e r (l) ;

Finally, with the MCMC sampler defined and a listener attached, we are ready to run the MCMC
sampler. This is accomplished by calling the MCMC sampler’s iterate method with the number of
iterations to perform:

31 mcmc. i t e r a t e (1 0) ;

Proceedings of DSC 2001 11

4.4 Running the Variable-at-a-time Metropolis Sampler

When combined with the Hydra library, the two classes we’ve created form a complete Java program.
On Unix-like systems with the standard Sun Java tools installed, the classes can be compiled using the
javac command:

> javac Binomia l BetaBinomia l S impleLike l ihood . java
> javac Binomial BetaBinomial SimpleExample . java

Once the classes are compiled, the MCMC sampler can be run using the Java interpreter by

> java org . omegahat . S imulat ion .MCMC. Examples . Binomial BetaBinomial SimpleExample

This will cause the MCMC sampler to print detailed information about each of the ten iterations to the
screen. The output for the first iteration is:

Chain Step Event (with d e t a i l s)
Last = Conta inerState : [0 . 9 0 . 2 3 0 . 7 1 0 . 4 9]
Last Prob = −359.046964566765
Proposed State = Conta inerState : [0 . 9 0 . 4 7 5 1 0 6 8 4 1 5 5 0 6 0 6 1 0 . 7 1 0 . 4 9]
Proposed Prob = −423.26454869568283
Current State = Conta inerState : [0 . 9 0 . 2 3 0 . 7 1 0 . 4 9]
Forward Prob = −0.0369493853787235
Reverse Prob = −0.0369493853787235
Acceptance Prob = −64.21758412891785
Acceptance Val = 0.658405257229882
Accepted ? = f a l s e
Acceptance Rate = 0.0

This gives the current and proposed states, the value of the unnormalized density, the forward and reverse
proposal probabilities, the acceptance probability, a flag indicating whether or not the proposed state
was accepted, the new state, and the cumulative acceptance rate. Note that the unnormalized density
and probabilities are reported on the log scale. The output for all 10 iterations is given in Appendix D

4.5 Enhancing the Variable-at-a-time Metropolis Sampler

This example can be enhanced in a number of ways. First, the class can be modified to use a different
proposal method. To use a (complete-state) random-walk Metropolis sampler, simply replace the Normal-
MetropolisComponentProposal with a NormalMetropolisProposal. Alternatively, the user could define
a custom proposal distribution and use it instead.

Second, it is impractical to store and interpret all of the detailed information produced by using the
StepListenerPrinter listener for more than a few iterations. Instead, we would like to store just the
current state to a disk file. This is accomplished by replacing the StepListenerPrinter object with a
StrippedListenerWriter. Change lines 28 and 29 to

28 Li s t ene rWr i t e r l = new St r ippedL i s t ene rWr i t e r (”MCMC. output ”) ;
29 MCMCListenerHandle lh = mcmc . r e g i s t e r L i s t e n e r (l) ;

and replace line 32 with

32 l . c l o s e () ;

The l.close(); command makes sure that the file that is used to store the MCMC output is properly
closed once the MCMC iterations are complete.

Now that the output is being stored to a disk file, it is reasonable to increase the number of iterations.
Naturally, this is done by changing the value in the mcmc.iterate call to the desired value, say 10, 000.

Proceedings of DSC 2001 12

0 2000 4000 6000 8000 10000

0.
6

0.
8

1.
0

Iterations

Trace of V1

0.5 0.6 0.7 0.8 0.9 1.0

0
2

4
6

N = 10000 Bandwidth = 0.01267

Density of V1

0 2000 4000 6000 8000 10000

0.
18

0.
24

Iterations

Trace of V2

0.16 0.18 0.20 0.22 0.24 0.26 0.28 0.30

0
10

20

N = 10000 Bandwidth = 0.003038

Density of V2

0 2000 4000 6000 8000 10000

0.
2

0.
6

1.
0

Iterations

Trace of V3

0.2 0.4 0.6 0.8 1.0

0.
0

1.
0

2.
0

N = 10000 Bandwidth = 0.02709

Density of V3

0 2000 4000 6000 8000 10000

0.
0

0.
4

0.
8

Iterations

Trace of V4

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

1.
0

N = 30000 Bandwidth = 0.03909

Density of V4

Figure 1: CODA plots for 10,000 MCMC iterations.

Compiling and running the modified class now generates a data file containing 10,000 MCMC iter-
ations. This output can be read into a standard statistical package for computation of diagnostics or
to perform inference. For this, we have found the CODA package of MCMC diagnostics, which exists in
versions for both R and S-PLUS, particularly helpful (see the appendix for information on obtaining CODA)
. For either version, the commands

l i b r a r y (data)
mcmc . data <− mcmc(as . matrix (read . t ab l e (”MCMC. output ”)) ;

will load the CODA library (provided it is installed) and properly import the MCMC data. A selection of
diagnostics, plots, and summaries is then available. For instance, the default CODA plots and summary
statistics for our 10,000 iterations are shown in Figure 1.

Proceedings of DSC 2001 13

4.6 Implementing the Normal Kernel Coupler

To implement the Normal Kernel Coupler (NKC) introduced by 20), only a three changes need to be
made to our example class. First, we use a different proposal distribution. Second, we initialize a set
of initial values rather than a single value. Third, we use the CustomHastingsCoupledSampler class
instead of the CustomMetropolisHastingsSampler class. The complete source code for the modified
class is given in table 4.

The proposal distribution for the NKC is implemented by the class NormalKernelProposal. Its
constructor requires two arguments, a random number generator, and a matrix that specifies the variance
for the normal kernel. For our example, the proposal is instantiated by the lines:

17 double [] [] Var = { { 0 . 0 0 3 , 0 . 0 , 0 . 0 , 0 . 0 } ,
18 { 0 . 0 , 0 . 0 0 1 , 0 . 0 , 0 . 0 } ,
19 { 0 . 0 , 0 . 0 , 0 . 0 1 2 , 0 . 0 } ,
20 { 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 0 7 } } ;
21

22 HastingsCoupledProposal proposa l = new NormalKernelProposal (Var , prng) ;

The NKC maintains a set of current states that must be initialized. We use a MultiDoubleState,
which holds a list of double values, to hold the initial values.

24 int numComponents = 200 ;
25

26 MultiDoubleState s t a t e0 = new MultiDoubleState (numComponents) ;
27 for (int i =0; i < numComponents / 2 ; i++)
28 s t a t e0 . add (new double [] { 0 . 9 0 3 , 0 . 2 2 8 , 0 . 7 0 8 , 0 . 4 8 6 }) ;
29

30 for (int i=numComponents / 2 ; i < numComponents ; i++)
31 s t a t e0 . add (new double [] { 0 . 0 7 8 , 0 . 8 3 1 , 0 . 2 3 0 , 4 . 5 e−9 }) ;

In this case, we’ve initialized half of the values to each of the two local maxima.
The logic of multi-state MCMC samplers is implemented by the CustomHastingsCoupledSampler

class. This class is instantiated using 6 parameters, the set of initial states, the number of current states
to maintain, the target (model) distribution, the proposal distribution, a random number generator, and
a flag indicating whether to report the details of the iteration:

33 CustomHastingsCoupledSampler mcmc =
34 mcmc = new CustomHastingsCoupledSampler (s t a t e0 , numComponents ,
35 t a r g e t , proposa l , prng ,
36 true) ;

Although we could have simply used a StrippedListenerWriter this would generate very large
output file by writing out the entire set of 200 current states at each iteration. Instead, we use using
ThinningProxyListener class, which “thins” the events it receives by a specified factor before passing
them on:

38 ThinningProxyListener pL = new ThinningProxyListener (numComponents) ;
39 MCMCListenerHandle pLh = mcmc . r e g i s t e r L i s t e n e r (pL) ;
40

41 MCMCListenerWriter l = new St r ippedL i s t ene rWr i t e r (”NKC. output ”) ;
42 MCMCListenerHandle lh = pL . r e g i s t e r L i s t e n e r (l 1) ;

Running the sampler now will output the complete state once every 200 iterations.

Proceedings of DSC 2001 14

Table 4: Class implementing a Normal Kernel Coupler for the LOH model.

1 package org . omegahat . S imulat ion .MCMC. Examples ;
2

3 import org . omegahat . S imulat ion .MCMC. ∗ ;
4 import org . omegahat . S imulat ion .MCMC. Proposa l s . ∗ ;
5 import org . omegahat . S imulat ion .MCMC. L i s t e n e r s . ∗ ;
6 import org . omegahat . S imulat ion . RandomGenerators . ∗ ;
7 import org . omegahat . P robab i l i t y . D i s t r i b u t i o n s . ∗ ;
8

9 public c lass Binomial BetaBinomial SimpleExample NKC {
10 stat ic public void main (St r ing [] argv) throws Throwable {
11

12 CollingsPRNGAdministrator a = new CollingsPRNGAdministrator () ;
13 PRNG prng = new CollingsPRNG (a . registerPRNGState ()) ;
14

15 UnnormalizedDensity t a r g e t = new Binomia l BetaBinomia l S impleLike l ihood () ;
16

17 double [] [] Var = { { 0 . 0 0 3 , 0 . 0 , 0 . 0 , 0 . 0 } ,
18 { 0 . 0 , 0 . 0 0 1 , 0 . 0 , 0 . 0 } ,
19 { 0 . 0 , 0 . 0 , 0 . 0 1 2 , 0 . 0 } ,
20 { 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 0 7 } } ;
21

22 HastingsCoupledProposal proposa l = new NormalKernelProposal (Var , prng) ;
23

24 int numComponents = 200 ;
25

26 MultiDoubleState s t a t e0 = new MultiDoubleState (numComponents) ;
27 for (int i =0; i < numComponents / 2 ; i++)
28 s t a t e0 . add (new double [] { 0 . 9 0 3 , 0 . 2 2 8 , 0 . 7 0 8 , 0 . 4 8 6 }) ;
29

30 for (int i=numComponents / 2 ; i < numComponents ; i++)
31 s t a t e0 . add (new double [] { 0 . 0 7 8 , 0 . 8 3 1 , 0 . 2 3 0 , 4 . 5 e−9 }) ;
32

33 CustomHastingsCoupledSampler mcmc =
34 mcmc = new CustomHastingsCoupledSampler (s t a t e0 , numComponents ,
35 t a r g e t , proposa l , prng ,
36 fa l se) ;
37

38 ThinningProxyListener pL = new ThinningProxyListener (numComponents) ;
39 MCMCListenerHandle pLh = mcmc . r e g i s t e r L i s t e n e r (pL) ;
40

41 MCMCListenerWriter l = new St r ippedL i s t ene rWr i t e r (”NKC. output ”) ;
42 MCMCListenerHandle lh = pL . r e g i s t e r L i s t e n e r (l 1) ;
43

44 mcmc. i t e r a t e (1 0 0 0 0) ;
45

46 l . c l o s e () ;
47 }
48 }

Proceedings of DSC 2001 15

5 Conclusions and Future Directions

Our example has shown that the Hydra MCMC library makes it easy to create different Metropolis-
Hastings samplers without extensive programming. This should encourage additional statisticians to
experiment with and use the Metropolis-Hastings method.

We hope that the Hydra library will form the basis of a set of MCMC tools that are easy to use,
robust, and complete. In particular we intend to integrate Hydra with the statistical tools R, Splus,
and SAS, as well as the new Omegahat statistical computing language (18; 2; 1). These interfaces promise
to provide flexible and powerful interactive environments for MCMC.

Other goals for the Hydra library include

• visual tools for specifying and monitoring MCMC simulations

• support for distributed/parallel computing

• a library of target distributions corresponding to common statistical models, such as GLM’s and
mixture models.

References

Douglas Bates, John Chambers, Di Cook, Peter Dalgaard, Robert Gentleman, Kurt Hornik, Ross Ihaka,
Friedrich Leisch, Thomas Lumley, Martin M achler, Guido Masarotto, Paul Murrell, Balasubramanian
Narasimhan, Brian Ripley, Gnther Sawitzki, Duncan Temple Lang, Luke Tierney, and Bill Venables.
The Omega project for statistical computing. web site, Sept 2000. http://www.omegahat.org/.

John M. Chambers. Users, programmers, and statistical software. Journal of Computational and Graph-
ical Statistics, 2000.

Bruce Jay Collings. Compound random number generators. Journal of the American Statistical Asso-
ciation, 82:525–527, 1987.

David Flanagan. Java in a Nutshell. O’Reilly & Associates, second edition, 1997.

W. R. Gilks, G. O. Roberts, and E. I. George. Adaptive direction sampling. The Statistician, 43:179–189,
1994.

W. R. Gilks, A. Thomas, and D. J. Spiegelhalter. Software for the Gibbs sampler. In Computing Science
and Statistics. Proceedings of the 24rd Symposium on the Interface, pages 439–448. Interface Foundation
of North America (Fairfax Station, VA), 1992.

W. R. Gilks, A. Thomas, and D. J. Spiegelhalter. A language and program for complex Bayesian
modeling. The Statistician, 43:169–177, 1994.

Walter R. Gilks and Gareth O. Roberts. Strategies for improving MCMC. In Markov Chain Monte
Carlo in Practice, pages 89–114. Chapman & Hall, 1996.

W. K. Hastings. Monte Carlo sampling methods using Markov chains and their applications. Biometrika,
57:97–109, 1970.

http://www.omegahat.org/

Proceedings of DSC 2001 16

Bill Joy, Guy Steele, James Gosling, and Gilad Bracha. The Java Language Specification. Addison-
Wesley, second edition, 2000. also at http://java.sun.com/docs/books/jls.

J. P. Lewis. Java versus C/C++ benchmarks. web site, Aug 2000. http://www.idiom.com/~zilla/
Computer/javaCbenchmark.html.

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, and A. H. Teller. Equations of state calculations
by fast computing machine. Journal of Chemical Physics, 21:1087–1091, 1953.

Radford Neal. Software for flexible Bayesian modeling and Markov chain sampling. Web Site, 2000.
http://www.cs.toronto.edu/~radford/fbm.software.html.

Chris Rijk. Binaries vs byte–codes. Ace’s Hardware (web site), June 2000. http://www.aceshardware.
com/Spades/read.php?article_id=153.

Andrew Schulman. Java on the fly. Webreview.com (web site), July 1997. http://webreview.com/wr/
pub/97/07/25/grok/.

D J Spiegelhalter, A Thomas, and N G Best. WinBUGS Version 1.2 User Manual. MRC Biostatistics
Unit, 1999.

Alastair Stevens. The BUGS project. Web Site, 2000. http://www.mrc-bsu.cam.ac.uk/bugs/
welcome.shtml.

Duncan Temple Lang. The Omega project: New possibilities for statistical software. Journal of Com-
putational and Graphical Statistics, 2000.

Luke Tierney. Introduction to general state–space markov chain theory. In Markov Chain Monte Carlo
in Practice, pages 59–74. Chapman & Hall, 1996.

Gregory R. Warnes. The Normal Kernel Coupler: An adaptive Markov Chain Monte Carlo method for
efficiently sampling from multi-modal distributions. PhD thesis, University of Washington, 2000.

Gabriel Zachmann. Java/C++ benchmark. web site, May 2000. http://www.igd.fhg.de/~zach/
benchmarks/.

A Installing HYDRA

The Hydra Java package is available in two forms, as a Jar file (Hydra.jar) containing only the compiled
classes and as a gzipped tar file (Hydra.current.tar.gz) containing the full source code as well as the
compiled classes. Both files are available from the Hydra web page located at http://www.warnes.net/Hydra.

A.1 Installing the jar File

Download Hydra.jar and append the full path to the jar file to the CLASSPATH. For example, if
Hydra.jar has been placed in the directory /home/user/jars/, the proper command for setting the
CLASSPATH using sh compatible shells is

> CLASSPATH=$CLASSPATH:/ home/ user / j a r s /Hydra . j a r
> export CLASSPATH

http://java.sun.com/docs/books/jls
http://www.idiom.com/~zilla/Computer/javaCbenchmark.html
http://www.idiom.com/~zilla/Computer/javaCbenchmark.html
http://www.cs.toronto.edu/~radford/fbm.software.html
http://www.aceshardware.com/Spades/read.php?article_id=153
http://www.aceshardware.com/Spades/read.php?article_id=153
http://webreview.com/wr/pub/97/07/25/grok/
http://webreview.com/wr/pub/97/07/25/grok/
http://www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml
http://www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml
http://www.igd.fhg.de/~zach/benchmarks/
http://www.igd.fhg.de/~zach/benchmarks/

Proceedings of DSC 2001 17

and using csh compatible shells

> setenv CLASSPATH $CLASSPATH:/ home/ user / j a r s /Hydra . j a r

A.2 Installing the Full Source

Download Hydra.current.tar.gz. It can then be unpacked using GNU tar via

> ta r −xvzf Hydra . cur rent . ta r . gz

which will unpack a directory tree with root “Hydra”. The Java files and source code are contained in
directories under Hydra/org/omegahat

The location of this directory then needs to be added to the Java class path. If the directory tree was
unpacked in /home/user/jsrc/ this can be accomplished using sh compatible shells by

> CLASSPATH=$CLASSPATH:/ home/ user / j s r c /Hydra
> export CLASSPATH

and using csh compatible shells

> setenv CLASSPATH $CLASSPATH:/ home/ user / j s r c /Hydra

A.3 Other Packages

Two additional Java packages may be required to use particular features of the Hydra library, Visual
Numerics’ JNL and Omegahat. In addition, the CODA package, in conjunction with either R or SPLUS
statistical packages, provides a useful suite of tools for evaluating and making inference using MCMC
output.

• Visual Numerics’ JNL library is required for several of the Hydra classes, in particular those used
in the Binomial-BetaBinomial example given below. JNL is available free of charge from the Visual
Numerics web site:
http://www.vni.com/products/wpd/jnl/.

• The Hydra MCMC classes were designed to be compatible with the Omegahat statistical pro-
gramming system. Omegahat provides an interactive environment for statistical programming and
analysis and is under active development by the Omegahat project, http://www.omegahat.org.

• The statistical package R is a free re-implementation of the S language and may be obtained free of
charge from http://www.r-project.org.

• The CODA package of MCMC diagnostics and other tools for Splus can be obtained from
http://www.mrc-bsu.cam.ac.uk/bugs/classic/coda04/readme.shtml.

A version for R can be obtained from http://www-fis.iarc.fr/coda.

Proceedings of DSC 2001 18

B Predefined Proposal Distributions

Hydra provides a selection of predefined proposal methods for the Metropolis, Metropolis-Hastings, and
Hastings-Coupled techniques.

Metropolis Samplers 1

Class Name Description
NormalMetropolisProposal normal random-walk proposal
NormalMetropolisComponentProposal variable-at-a-time random-walk

proposal

Metropolis-Hastings Samplers 1

Class Name Description
NormalProposal (fixed) normal proposal
NormalMetropolisProposal normal random-walk proposal
NormalMetropolisComponentProposal variable-at-a-time random-walk

proposal
MixtureProposal finite mixture proposal using

specified components

Proceedings of DSC 2001 19

Hastings-Coupled (Multi-Chain) Samplers 1

Class Name Description
IndependentHastingsCoupledProposal Wrapper for independent

Metropolis-Hastings Samplers
AdaptiveNormalMetropolisProposal (Variance) Adaptive Normal

Metropolis Proposal
AdaptiveNormalProposal (Mean, Variance) Adaptive

Normal Proposal
NormalKernelProposal Normal Kernel Coupler
AdaptiveNormalKernelProposal (Variance) Adaptive Normal

Kernel Coupler
LocallyAdaptiveNormalKernelProposal Locally-Adaptive Normal Kernel

Coupler
KernelDirectionSampler Kernel Direction Sampler

Proceedings of DSC 2001 20

C Predefined Listeners

A variety of predefined listeners are available. These allow monitoring various features of the MCMC
simulation and give several storage methods.

1

Class Name Description

AcceptanceWriter Stores the cumulative acceptance rate to a file
CovarianceWriter Stores the cumulative covariance matrix to a file
DistanceListener Computes the observed and expected acceptance rate,

step distance, step distance conditional on acceptance
DistanceWriter Stores the observed and expected acceptance rate,

step distance, step distance conditional on acceptance
to a file

HistogramWriter Stores a cumulative histogram of the current states a file
ListenerGzipWriter Stores the current state to GZIP compressed file
ListenerPrinter Prints the event passed to notify()
ListenerWriter Stores the event passed to notify() to a file
MeanWriter Stores the cumulative mean vector to a file
PosteriorProbWriter Stores the (unnormalized) posterior probability of the

current state to a file
QuantileWriter Stores the cumulative quantiles to a file
StepListenerPrinter Prints MCMCStepEvents

StrippedListenerGzipWriter Stores the current state to a GZIP compressed file
StrippedListenerWriter Stores the current state to a file
ThinningProxyListener A proxy for other listeners that thins the reported events

by a specified factor, eg 1 out of every 100

Proceedings of DSC 2001 21

D Output from Binomial BetaBinomial Example.java

> java org . omegahat . S imulat ion .MCMC. Examples . Binomial BetaBinomial Example

Chain Step Event (with d e t a i l s)
Last = Conta inerState : [0 . 9 0 . 2 3 0 . 7 1 0 . 4 9]
Last Prob = −359.046964566765
Proposed State = Conta inerState : [0 . 9 0 . 4 7 5 1 0 6 8 4 1 5 5 0 6 0 6 1 0 . 7 1 0 . 4 9]
Proposed Prob = −423.26454869568283
Current State = Conta inerState : [0 . 9 0 . 2 3 0 . 7 1 0 . 4 9]
Forward Prob = −0.0369493853787235
Reverse Prob = −0.0369493853787235
Acceptance Prob = −64.21758412891785
Acceptance Val = 0.658405257229882
Accepted ? = f a l s e
Acceptance Rate = 0.0

Chain Step Event (with d e t a i l s)
Last = Conta inerState : [0 . 9 0 . 2 3 0 . 7 1 0 . 4 9]
Last Prob = −359.046964566765
Proposed State = Conta inerState : [0 . 9 0 . 2 3 0 . 4 5 6 1 0 0 9 6 8 3 0 8 8 3 1 9 6 0 . 4 9]
Proposed Prob = −360.0165066537818
Current State = Conta inerState : [0 . 9 0 . 2 3 0 . 4 5 6 1 0 0 9 6 8 3 0 8 8 3 1 9 6 0 . 4 9]
Forward Prob = −0.06327351354448152
Reverse Prob = −0.06327351354448152
Acceptance Prob = −0.969542087016805
Acceptance Val = 0.31056162077494043
Accepted ? = true
Acceptance Rate = 0.5

Chain Step Event (with d e t a i l s)
Last = Conta inerState : [0 . 9 0 . 2 3 0 . 4 5 6 1 0 0 9 6 8 3 0 8 8 3 1 9 6 0 . 4 9]
Last Prob = −360.0165066537818
Proposed State = Conta inerState : [0 . 9 0 . 2 3 0 . 4 5 6 1 0 0 9 6 8 3 0 8 8 3 1 9 6 0 . 4 2 2 5 1 8 9 5 7 4 1 5 2 1 9 6]
Proposed Prob = −360.1951841070053
Current State = Conta inerState : [0 . 9 0 . 2 3 0 . 4 5 6 1 0 0 9 6 8 3 0 8 8 3 1 9 6 0 . 4 2 2 5 1 8 9 5 7 4 1 5 2 1 9 6]
Forward Prob = 0.6154440530408976
Reverse Prob = 0.6154440530408976
Acceptance Prob = −0.17867745322348583
Acceptance Val = 0.13272539253007873
Accepted ? = true
Acceptance Rate = 0.6666666666666666

Chain Step Event (with d e t a i l s)
Last = Conta inerState : [0 . 9 0 . 2 3 0 . 4 5 6 1 0 0 9 6 8 3 0 8 8 3 1 9 6 0 . 4 2 2 5 1 8 9 5 7 4 1 5 2 1 9 6]
Last Prob = −360.1951841070053
Proposed State = Conta inerState : [1 . 0245145624463277 0 . 23 0 . 45610096830883196
0 .4225189574152196]
Proposed Prob = − I n f i n i t y
Current State = Conta inerState : [0 . 9 0 . 2 3 0 . 4 5 6 1 0 0 9 6 8 3 0 8 8 3 1 9 6 0 . 4 2 2 5 1 8 9 5 7 4 1 5 2 1 9 6]
Forward Prob = 0.23049155040119496
Reverse Prob = 0.23049155040119496
Acceptance Prob = − I n f i n i t y
Acceptance Val = 0.335025050367706
Accepted ? = f a l s e
Acceptance Rate = 0.5

Chain Step Event (with d e t a i l s)
Last = Conta inerState : [0 . 9 0 . 2 3 0 . 4 5 6 1 0 0 9 6 8 3 0 8 8 3 1 9 6 0 . 4 2 2 5 1 8 9 5 7 4 1 5 2 1 9 6]
Last Prob = −360.1951841070053
Proposed State = Conta inerState : [0 . 9 0 . 1856011046441249 0 . 45610096830883196
0 .4225189574152196]
Proposed Prob = −363.1065248979661
Current State = Conta inerState : [0 . 9 0 . 2 3 0 . 4 5 6 1 0 0 9 6 8 3 0 8 8 3 1 9 6 0 . 4 2 2 5 1 8 9 5 7 4 1 5 2 1 9 6]
Forward Prob = 0.3116872397632934
Reverse Prob = 0.3116872397632934

Proceedings of DSC 2001 22

Acceptance Prob = −2.9113407909608213
Acceptance Val = 0.14726731467399157
Accepted ? = f a l s e
Acceptance Rate = 0.4

Chain Step Event (with d e t a i l s)
Last = Conta inerState : [0 . 9 0 . 2 3 0 . 4 5 6 1 0 0 9 6 8 3 0 8 8 3 1 9 6 0 . 4 2 2 5 1 8 9 5 7 4 1 5 2 1 9 6]
Last Prob = −360.1951841070053
Proposed State = Conta inerState : [0 . 9 0 . 2 3 0 . 1 8 2 5 2 5 6 9 8 0 6 2 8 8 8 1 0 . 4 2 2 5 1 8 9 5 7 4 1 5 2 1 9 6]
Proposed Prob = −364.9924350935826
Current State = Conta inerState : [0 . 9 0 . 2 3 0 . 4 5 6 1 0 0 9 6 8 3 0 8 8 3 1 9 6 0 . 4 2 2 5 1 8 9 5 7 4 1 5 2 1 9 6]
Forward Prob = −0.1255457772139429
Reverse Prob = −0.1255457772139429
Acceptance Prob = −4.797250986577353
Acceptance Val = 0.4310649477090058
Accepted ? = f a l s e
Acceptance Rate = 0.3333333333333333

Chain Step Event (with d e t a i l s)
Last = Conta inerState : [0 . 9 0 . 2 3 0 . 4 5 6 1 0 0 9 6 8 3 0 8 8 3 1 9 6 0 . 4 2 2 5 1 8 9 5 7 4 1 5 2 1 9 6]
Last Prob = −360.1951841070053
Proposed State = Conta inerState : [0 . 9 0 . 2 3 0 . 4 5 6 1 0 0 9 6 8 3 0 8 8 3 1 9 6 0 . 5 8 7 9 7 0 3 5 3 3 0 0 0 0 5 5]
Proposed Prob = −359.85442835072524
Current State = Conta inerState : [0 . 9 0 . 2 3 0 . 4 5 6 1 0 0 9 6 8 3 0 8 8 3 1 9 6 0 . 5 8 7 9 7 0 3 5 3 3 0 0 0 0 5 5]
Forward Prob = 0.3415983954458079
Reverse Prob = 0.3415983954458079
Acceptance Prob = 0.0
Acceptance Val = 0.36058319097411967
Accepted ? = true
Acceptance Rate = 0.42857142857142855

Chain Step Event (with d e t a i l s)
Last = Conta inerState : [0 . 9 0 . 2 3 0 . 4 5 6 1 0 0 9 6 8 3 0 8 8 3 1 9 6 0 . 5 8 7 9 7 0 3 5 3 3 0 0 0 0 5 5]
Last Prob = −359.85442835072524
Proposed State = Conta inerState : [0 . 6696587069504394 0 . 23 0 . 45610096830883196
0 .5879703533000055]
Proposed Prob = −361.2666064185844
Current State = Conta inerState : [0 . 9 0 . 2 3 0 . 4 5 6 1 0 0 9 6 8 3 0 8 8 3 1 9 6 0 . 5 8 7 9 7 0 3 5 3 3 0 0 0 0 5 5]
Forward Prob = 0.00517213125315924
Reverse Prob = 0.00517213125315924
Acceptance Prob = −1.412178067859145
Acceptance Val = 0.9268299028867995
Accepted ? = f a l s e
Acceptance Rate = 0.375

Chain Step Event (with d e t a i l s)
Last = Conta inerState : [0 . 9 0 . 2 3 0 . 4 5 6 1 0 0 9 6 8 3 0 8 8 3 1 9 6 0 . 5 8 7 9 7 0 3 5 3 3 0 0 0 0 5 5]
Last Prob = −359.85442835072524
Proposed State = Conta inerState : [0 . 9 0 . 2099774552506214 0 . 45610096830883196
0 .5879703533000055]
Proposed Prob = −360.42346255905113
Current State = Conta inerState : [0 . 9 0 . 2099774552506214 0 . 45610096830883196
0 .5879703533000055]
Forward Prob = 0.32110939780366615
Reverse Prob = 0.32110939780366615
Acceptance Prob = −0.5690342083258884
Acceptance Val = 0.3311132575995816
Accepted ? = true
Acceptance Rate = 0.4444444444444444

Chain Step Event (with d e t a i l s)
Last = Conta inerState : [0 . 9 0 . 2099774552506214 0 . 45610096830883196
0 .5879703533000055]
Last Prob = −360.42346255905113
Proposed State = Conta inerState : [0 . 9 0 . 2099774552506214 0 . 15833697164158184
0 .5879703533000055]
Proposed Prob = −365.44521171685466
Current State = Conta inerState : [0 . 9 0 . 2099774552506214 0 . 45610096830883196

Proceedings of DSC 2001 23

0 .5879703533000055]
Forward Prob = −0.2084655958574132
Reverse Prob = −0.2084655958574132
Acceptance Prob = −5.0217491578035265
Acceptance Val = 0.7418864833851747
Accepted ? = f a l s e
Acceptance Rate = 0.4

	Introduction
	Our Approach
	Constructing Metropolis-Hastings Samplers Using HYDRA
	The UnnormalizedDensity Interface for Target Distributions
	The GeneralProposal Interface for Proposal Distributions
	The MCMCListener Interface for Listener Objects

	Example
	Overview
	Creating a Target Distribution
	Creating a Variable-at-a-time Metropolis Sampler
	Running the Variable-at-a-time Metropolis Sampler
	Enhancing the Variable-at-a-time Metropolis Sampler
	Implementing the Normal Kernel Coupler

	Conclusions and Future Directions
	Installing HYDRA
	Installing the jar File
	Installing the Full Source
	Other Packages

	Predefined Proposal Distributions
	Predefined Listeners
	 Output from Binomial_BetaBinomial_Example.java

